Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТЕМА 3. ЛИНИИ И ПОВЕРХНОСТИ ПЕРВОГО





И ВТОРОГО ПОРЯДКА. Основные формулы

СОДЕРЖАНИЕ

1. Понятие уравнения линии на плоскости / поверхности в ространстве…1

2. Уравнение прямой на плоскости ……………………...2

3. Применение: линейное интерполирование функций……………...3

4. Линейные неравенства. Графический метод линейного

программирования………………………………………………………..4

5.Уравнение плоскости в пространстве………………………………..5

6 Уравнение прямой в пространстве………………………….6

7. Плоские линии второго порядка…………………………....7

8. Поверхности второго порядка………………………………8

1. Понятие уравнения линии на плоскости / поверхности в пространстве.

Если некоторая линия на плоскости состоит из всех точек, координаты которых удовлетворяют некоторому уравнению для двух переменных x, y, то это уравнение называется уравнением (данной) линии.

Например, каноническим (т.е. стандартным) уравнением окружности с центром в точке M0 (x 0; y 0 ) и с радиусом R является

(x - x 0) 2 + (y - y 0 ) 2 = R 2.(1)

Это - уравнение 2-й степени (или 2-го порядка). Так как левая часть этой формулы

(в силу формулы (10) на стр.16) есть квадрат расстояния от точки M (x; y) до центра M0 окружности, то равенство (1) есть формульное выражение того факта, что окружность состоит из всех точек Mна плоскости с расстоянием R до центра M0 .

Типовая задача аналитической геометрии: для заданной линии составить уравнение (и по возможности записать его в канонической форме). Однако решать это уравнение, как правило, не требуется.

По аналогии, если некоторая поверхность в пространстве состоит из всех точек, координаты которых удовлетворяют некоторому уравнению для трех переменных x, y, z, то это уравнение называется уравнением (данной) поверхности.

Например, каноническим уравнением сферы с центром в точке M0(x 0; y 0; z 0) и с радиусом R является следующее уравнение 2-го порядка:

(x - x 0) 2+(y - y 0)2+ (z - z 0) 2= R 2 . (2)

 

 







Дата добавления: 2015-08-12; просмотров: 398. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия