Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение плоскости пространстве.





1-я ситуация. Известны одна точка M0 (x 0 ; y 0 ; z 0 ) плоскости Pи ненулевой вектор (A; B; C), перпендикулярный к этой плоскости (такой вектор называется нормальным вектором плоскости). для точек M(x; y; z) плоскости векторы и перпендикулярны, и их скалярное произведение равно нулю:

А (x - x 0) + B (y - y 0)+ C (z - z 0 )=0. (11)

Вводя постоянную D = - A x 0B y 0 C z 0, получаем общее уравнение плоскости в пространстве:

A x + B y + C z + D = 0. (12)

Это – линейное уравнение для трех переменных, причем хотя бы один из коэффициентов A, B, C не равен нулю.

Для точек M (x; y; z), не лежащих на плоскости P, расстояние d до плоскости равно d = | A x + B y + C z + D | / (ср. с формулой (5)).

Замечание. В дальнейшем (в теме 8) используется уравнение плоскости с двумя угловыми коэффициентами. Пусть в уравнении (11) С ¹ 0, тогда уравнение плоскости приобретает вид z-z 0 =k 1 × (x-x 0 ) +k 2 × (y-y 0), где k 1 = - A / C, k 2 = - B / C.

Коэффициенты k 1 и k 2 имеют следующий геометрический смысл: k 1 (соответственно,

k 2 ) есть угловой коэффициент прямой, состоящей из точек данной плоскости с постоянным значением y = y 0 (соответственно, с постоянным значением x = x 0 ).

Свойства нормального вектора плоскости. (а) Если две плоскости параллельны, то их нормальные векторы коллинеарны (пропорциональны):

1 ´ 2 = 0. (б) Если две плоскости перпендикулярны, то их нормальные векторы

перпендикулярны: 1× 2 = 0. (в) Еслиa - угол между двумя плоскостями, то

cos a = | 1× 2 | / | 1 | × | 2|.

2-я ситуация. На плоскости P известны три точки M0(x 0; y 0; z 0),

M1(x 1; y 1; z 1), M2(x 2 ; y 2; z 2), не лежащие на одной прямой. Тогда уравнение

плоскости P записывается через определитель:

=0. (13)

 

· Пояснение. Вектор является нормальным вектором плоскости P (см. применения векторного произведения в геометрии).

Для точек M(x; y; z) векторы и ортогональны, и их скалярное произведение равно нулю: × = = 0. Теперь формула (13) следует из формулы (15)

В частности, если известны три точки M0(a; 0; 0), M1(0; b; 0), m2(0; 0; c) плоскости, принадлежащие координатным осям O x,O y,O z, соответственно, то пишут

так называемое уравнение плоскости в отрезках: x / a + y / b + z / c = 1.

 







Дата добавления: 2015-08-12; просмотров: 461. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия