Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Плоские линии второго порядка.





Линиявторого порядка на плоскости удовлетворяет уравнению второй степени общего вида

a 11 x 2 +2 a 12 x y + a 22 y 2 + b 1 x + b 2 y + c = 0, (16)

где хотя бы один из коэффициентов a 11, a 12, a 22 не равен нулю. Принято исключать

из рассмотрения т.наз. распадающиеся уравнения, когда левая часть в (16) является произведением двух выражений 1-й степени по x и y. Распадающиеся уравнения описывают либо одну прямую (например, уравнение x 2 = 0), либо пару прямых (например, уравнение x × y = 0). Далее рассматриваются только нераспадающиеся уравнения, которым соответствуют искривленные линии.

С помощью поворота системы координат можно перейти к новым координатах, в

которых уравнение вида (16) упрощается, а именно, отсутствует слагаемое вида 2 a 12 x y. Последующим сдвигом начала системы координат можно перейти к переменным, в которых уравнение линии еще более упрощается, а именно, отсутствует слагаемое вида b 1 x или b 2 y, либо отсутствуют оба таких слагаемых. В результате выясняется, что существуют лишь три класса линий с нераспадающимся уравнением второй степени: эллипс, гипербола и парабола. Для каждого из этих классов имеется простейшая стандартная форма уравнения, называемая канонической.

1.Эллипс: каноническое уравнение

x 2 / a 2 + y 2 / b 2 = 1 (a > 0, b > 0). (17)

Этот эллипс представляет собой овал, вписанный в прямоугольник со сторонами x = ± a, y = ± b. Центр данного эллипса совпадает с началом координат O, отрезки a и b называются полуосями эллипса (вдоль координатных осей O x и O y, соответственно), точки (± a; 0) и (0; ± b) называются вершинами эллипса. При

a = b = R эллипс переходит в окружность радиуса R с центром в начале координат O (уравнение такой окружности x 2+ y 2= R 2 ).

Уравнение (x - x 0)2 / a 2 + (y - y 0)2 / b 2 = 1 есть каноническое уравнение эллипса с центром в точке M0(x 0; y 0) и с полуосями a и b вдоль координатных осей.

2.Гипербола: каноническое уравнение

x 2 / a 2 - y 2 / b 2 = 1 (a > 0, b > 0). (18)

Эта гипербола состоит из двух сплошных линий (- связных компонент),

«описанных» около прямоугольника со сторонами x = ± a, y = ± b. Центр данной гиперболы совпадает с началом координат O, оси гиперболы совпадают с координатными осями, точки (± a; 0) называются вершинами гиперболы. Отрезок a (на оси O x) называется вещественной полуосью. Отрезок b (на оси O y) называется мнимой полуосью. Прямые y = ± (b / ax называются асимптотами гиперболы; к ним сколь угодно близко приближаются точки гиперболы при удалении от начала координат.

Уравнение (x - x 0)2 / a 2 - (y - y 0)2 / b 2 = 1 есть каноническое уравнение гиперболы с центром в точке M0(x 0; y 0), вещественной полуосью a (в направлении оси O x) и с мнимой полуосью b (в направлении оси O y).Заметим, что часто встречающееся уравнение x × y = 1 (или y = 1 / x) есть также уравнение гиперболы, однако неканонического вида.

3.Парабола: каноническое уравнение

y = x 2 / 2 p (p > 0). (20)

Вершина данной гиперболы - начало координат O, ветви направлены вверх.

уравнение y - y 0 =(x - x 0)2 / 2 p есть уравнение параболы с вершиной M0(x 0; y 0)и с ветвями вверх.

 







Дата добавления: 2015-08-12; просмотров: 549. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия