Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямая линия на плоскости.





1.1. Уравнение линии на плоскости.

 

Положение точки на плоскости определяется двумя координатами.

Прямоугольная декартова система координат на плоскости представляет из себя две перпендикулярные прямые, снабженные масштабами и направлениями. Такие прямые называются координатными осями - осью абсцисс Ох и осью ординат Оy.

Пусть на плоскости заданы декартова прямоугольная система координат и некоторая линия L. Рассмотрим уравнение F (x,y)=0 (или y = j (x)), связывающее две переменные величины x и y. Это уравнение называется уравнением линии L (относительно заданной системы координат), если 1) ему удовлетворяют координаты (x,y) любой точки линии L и 2) ему не удовлетворяют координаты ни одной точки, не лежащей на линии L.

1.2. Различные виды уравнения прямой.

 

В декартовых координатах каждая прямая определяется уравнением первой степени с двумя переменными и обратно: каждое уравнение первой степени

Ax + By + C = 0 (1)

(где А и В не равны нулю одновременно) определяет некоторую прямую. Это уравнение называется общим уравнением прямой. Возможны следующие случаи:

1) С = 0, уравнение имеет вид Ax + By = 0 и определяет прямую, проходящую через начало координат;

2) В = 0 (А ¹ 0), уравнение принимает вид Ax + C = 0 или x = - прямая, параллельная оси Oy (в частности, x = 0 - уравнение самой оси Oy);

3) А = 0 (В ¹ 0), уравнение принимает вид Вy + C = 0 или y = - прямая, параллельная оси Ox (в частности, y = 0 - уравнение самой оси Ox).

 
M
y
y
Рис.1
Замечание. Для построения прямой, заданной общим уравнением, достаточно указать любые две ее точки.

N
Пример 1. Определить точки пересечения прямой 3 x - 4 y + 12= 0 с координатными осями и построить эту прямую.

 
-4
x
Решение. Полагая x = 0, находим y = 3; таким образом, получена точка М (0,3) пересечения

прямой с осью Oy. При y = 0 значение x = -4 и N (-4,0) - точка пересечения прямой с осью Ox. Осталось провести прямую через точки М и N (рис. 1). ■

Если ни один из коэффициентов уравнения (1) не равен нулю, то его можно преобразовать к виду

 

, (2)

где a = и b = есть величины отрезков, которые отсекает прямая на координатных осях. Уравнение (2) называется уравнением прямой «в отрезках». Эта форма уравнения прямой особенно удобна для построения прямой на чертеже. Так, в предыдущем примере, после записи уравнения прямой в виде , легко определить координаты точек М и N.

Рассмотрим на плоскости xOy прямую, не параллельную оси Oy; при движении вдоль такой прямой в одном направлении x возрастает, а в другом убывает. Направление, отвечающее возрастанию x, назовем положительным. Угол a, на который надо повернуть положительную полуось Оx, чтобы совместить ее с положительным направлением данной прямой, называют углом наклона прямой к оси абсцисс. При этом угол наклона считается положительным, если положительную полуось Оx надо поворачивать против часовой стрелки, и отрицательным в противном случае, так что < a < . Можно считать, что для прямой, параллельной оси Оy, угол наклона a = .

Угловым коэффициентом прямой k называется тангенс угла наклона прямой к оси Оx:

k = .

Замечание. Прямая, параллельная оси Оy, не имеет углового коэффициента, т.к. не существует; или можно считать, что ее угловой коэффициент равен бесконечности, т.к. при a ® ® ¥.

Если прямая не параллельна оси Оy, то ее уравнение можно записать в виде

y = kx+b. (3)

Это уравнение называется уравнением прямой с угловым коэффициентом; k - угловой коэффициент; b - величина отрезка, который отсекает прямая на оси Оy, считая от начала координат. В частном случае, при b = 0 прямая y = kx проходит через начало координат.

Из общего уравнения прямой (1) при В¹;0 можно получить уравнение y = , т.е. уравнение прямой с угловым коэффициентом k = .

Пример 2. Найти угол наклона к оси Оx прямой, заданной общим уравнением 2 x + 5 y + 17= 0.

Решение. Выразим из данного уравнения y. Получим уравнение прямой с угловым коэффициентом y = . Откуда, k = = -0,4, так что = -0,4. Искомый угол a = . ■

Рассмотрим далее решение некоторых типовых задач.







Дата добавления: 2015-08-12; просмотров: 551. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия