Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Векторное произведение.





Векторное произведение ´ двух геометрических векторов и определяется как вектор с тремя характеристическими свойствами:

1) ê ´ ê =ê ê× ê ê ×sin j - это площадь параллелограмма, построенного на векторах и (j - угол между векторами и ); 2) вектор ´ ортогонален к векторам и (и, следовательно, к плоскости, содержащей векторы и ; 3) кратчайший поворот от к выглядит со стороны вектора ´ происходящим против часовой стрелки.

Связь векторного произведения со скалярным: | ´ |2 + ( × )2 = | |2 × | |2.

Пример векторного произведения в механике. Пусть к твердому телу, закрепленному шарнирно в начале координат O, приложена сила. - вектор силы,

- вектор из Oв точку приложения силы; вращающий момент силы относительно точки Oесть вектор = ´ , направленный вдоль оси вращения. Его абсолютная величина ê ê равна произведению (величины) силы на «плечо».

Для векторного произведения можно написать формулу, аналогичную (4).

´ = ê ê× ^ ; (11)

здесь вектор ^ получается проектированием вектора на плоскость, перпендикулярную к вектору ,и последующим поворотом этой проекции в указанной плоскости на 90° против часовой стрелки (если смотреть со стороны вектора ).

Если два вектора и коллинеарны, то ´ = 0. другие свойства таковы.

Свойства векторного произведения. 1) ´ = - ´ ; 2) ´ k = k ´ (k - число); 3) ´ ( + ) = ´ + ´ .

Свойства 2) и 3) получаются из формулы (11) и соответствующих свойств векторных проекций. Они означают, что при векторном умножении скобки раскрываются, как при умножении чисел. Например,(2 – 3 ) ´ = 2 ´ – 3 ´ . (Однако сочетательного свойства для ´( ´ )нет.)

Из формулы (11) и определения легко вывести «таблицу» векторного умножения ортов , , правой прямоугольной системы координат (далее рассматриваются правые системы): ´ = ´ = ´ = 0;

´ = , ´ = , ´ = ; ´ =- , ´ =- , ´ =- .

Разлагая векторы и по ортам и используя «таблицу» векторного умножения ортов, получаем выражение для ´ , которое компактно записывается с помощью определителя (после раскрытия его получится вектор).

Правило. Имеет место алгебраическая формула для векторного произведения векторов (x 1; y 1; z 1 (x 2; y 2; z 2):

(12)

Применения векторного произведения в геометрии.

1) Площадь параллелограмма, построенного на векторах и :

S = | ´ |. (13)

2) Площадь треугольника A1A2A3: S = 1/ 2 ×| |.

3) Вектор , перпендикулярный к плоскости треугольника A1A2A3: .

 







Дата добавления: 2015-08-12; просмотров: 429. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия