Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Геометрический метод решения системы линейных неравенств с двумя переменными





Совокупность линейных неравенств с общими неизвестными называется системой линейных неравенств.

Неравенства могут быть одного смысла (≤ или ≥) или разного.

Множество решений, которое удовлетворяет каждому неравенству системы, называется решением системы неравенств.

Системы неравенств, имеющие хотя бы одно решение, называются совместными.

Если системы неравенств не имеют решений, то они – несовместные.

Если система m неравенств с двумя переменными совместна, то множеством решений такой системы является выпуклый многоугольник или выпуклая многоугольная область (неограниченная).

Множеством решений системы линейных неравенств с двумя переменными может быть:

1) Точка;

2) Пустое множество;

3) Выпуклый многоугольник;

4) Выпуклая неограниченная область.

Пример:

Построить область решений системы линейных неравенств:

1)

– прямая l 1

x 1 = 0; x 2 = 5

x 2 = 0; x 1 = -10/5

О(0;0) ≤ 10 – верно

2)

– прямая l 2

x 1 = 0; x 2 = 6,2

x 2 = 0; x 1 = 14

О(0;0) ≤ 56 – верно

3)

– прямая l 3

x 1 = 0; x 2 = 4/3

x 2 = 0; x 1 = 0,8

О(0;0) ≥ 4 – неверно

 

Точки пересечения:

10 х 2 = 86

х 2 = 8,6

-3 х 1 = 7,2

х 1 = 2,4

(2,4; 8,6)

 







Дата добавления: 2015-08-12; просмотров: 952. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия