Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Геометрический метод решения системы линейных неравенств с двумя переменными





Совокупность линейных неравенств с общими неизвестными называется системой линейных неравенств.

Неравенства могут быть одного смысла (≤ или ≥) или разного.

Множество решений, которое удовлетворяет каждому неравенству системы, называется решением системы неравенств.

Системы неравенств, имеющие хотя бы одно решение, называются совместными.

Если системы неравенств не имеют решений, то они – несовместные.

Если система m неравенств с двумя переменными совместна, то множеством решений такой системы является выпуклый многоугольник или выпуклая многоугольная область (неограниченная).

Множеством решений системы линейных неравенств с двумя переменными может быть:

1) Точка;

2) Пустое множество;

3) Выпуклый многоугольник;

4) Выпуклая неограниченная область.

Пример:

Построить область решений системы линейных неравенств:

1)

– прямая l 1

x 1 = 0; x 2 = 5

x 2 = 0; x 1 = -10/5

О(0;0) ≤ 10 – верно

2)

– прямая l 2

x 1 = 0; x 2 = 6,2

x 2 = 0; x 1 = 14

О(0;0) ≤ 56 – верно

3)

– прямая l 3

x 1 = 0; x 2 = 4/3

x 2 = 0; x 1 = 0,8

О(0;0) ≥ 4 – неверно

 

Точки пересечения:

10 х 2 = 86

х 2 = 8,6

-3 х 1 = 7,2

х 1 = 2,4

(2,4; 8,6)

 







Дата добавления: 2015-08-12; просмотров: 952. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия