Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вероятности.





Зная число степеней свободы и критерий t с помощью графика (рис.12) находим вероятность появления данного (или большего) значения t, если оба эти средние значения относятся к одной и той же совокупности.

Для полученных уровней значимости справедливо все сказанное при рассмотрении критерия χ2

 

Дисперсный анализ. Критерий Фишера.

Дисперсный анализ применяется когда необходимо узнать:

Оказывает ли влияние переменная Х на переменную У? или

Сравнить изменчивость ( или размах ) двух или большего числа выборок данных.

F- критерий (критерий Фишера)- отношение 2х дисперсий, вычисленных или полученных разными способами.

Пример: Испытания на прочность (сжатие) двух партий бетона. Из партии m взяты 8 проб и получены результаты (в кг/см2): 305,6; 270,8; 298,0; 218,6; 273,3; 270,8; 229,4; 265,8.

Из партии u взято 17 проб и получены следующие данные: 298,0; 263,4; 288,2; 300,7; 327,9; 303,1; 278,2; 296,0; 316,3; 290,7; 318,0; 270,8; 305,6; 320,5; 293,2; 285,5; 316,3.

 

 

Состав бетона и методика испытаний не менялись.

Вопрос: существует ли между дисперсиями данных двух партий значимое различие?

Решение:Вычисляем дисперсию двух выборок проб по формуле S2 =

Для 1ой партии получим S2m = 896,54. Для 2ой партии S2u =326,16.

В нашем случае: F = S2m / S2n= 2,75

Вероятность получения любого данного значения F, если в действительности две дисперсии не являются различными, представлены в виде таблиц как функции числа степеней свободы для 2х выборок данных, на основе которых вычисляется это соотношение.

Значения критерия F при вероятности Р =0,05 представлены в таблице (таблица составлена при допущении S21 > S22, т.е. п1 относится к выборке данных, имеющих большую дисперсию).

Таблица значений критерия F при вероятности Р = 0,05

п2 \ п1                
                   
  18,5 19,2 19,2 19,3 19,3 19,3 19,4 19,5 19,5
  10,1 9,6 9,3 9,1 9,0 8,9 8,7 8,6 8,5
  7,7 6,9 6,6 6,4 6,3 6,2 5,9 5,8 5,6
  6,6 5,8 5,4 5,2 5,1 5,0 4,7 4,5 4,4
  6,0 5,1 4,8 4,5 4,4 4,3 4,0 3,8 3,7
  5,3 4,5 4,1 3,8 3,7 3,6 3,3 3,1 2,9
  5,0 4,1 3,7 3,5 3,3 3,2 2,9 2,7 2,5
  4,8 3,9 3,5 3,3 3,1 3,0 2,7 2,5 2,3
  4,5 3,6 3,2 3,0 2,9 2,7 2,4 2,2 2,0
  4,4 3,5 3,1 2,9 2,7 2,6 2,3 2,1 1,8
  4,2 3,3 2,9 2,7 2,5 2,4 2,1 1,9 1,6
  4,0 3,2 2,8 2,5 2,4 2,3 1,9 1,7 1,4
3,8 3,0 2,6 2,4 2,2 2,1 1,8 1,5 1,0

 

Выборка, взятая в партии т8 проб. Если взять 7 значений, то 8е оказывается заданным, т.к. известно среднее значение. Следовательно: число степеней свободы для партии равно 7.

Аналогично для партии u: 17проб, а число степеней свободы равно 16.

Из таблицы значений F, как функции числа степеней свободы для двух выборок находим:

Для пт=7 и пи=16 F = 2,6.

Т аким образом рассматриваемые нами выборки принадлежат к одной и той же совокупности с вероятностью Р = 0,05, т.е. имеются основания сомневаться, что эти две дисперсии соответствуют одной совокупности.

Вывод: прочность бетона не только колеблется в течение суток, но и средние суточные значения так же изменяются.







Дата добавления: 2015-09-04; просмотров: 452. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия