Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модель максимизации ожидаемого дохода при заданном уровне риска.





В соответствии с классическим подходом модель должна быть записана в следующей форме:

(2.1.1)

(2.1.2)

В данной модели есть четкое бинарное отношение: , есть приемлемый уровень риска, на который готов пойти инвестор.

Однако представленная модель является недостаточно корректной, так как ожидаемая доходность портфеля есть нечеткая величина (2.1).

В связи с этим требуется введение дополнительного принципа принятия решений, уже в условиях нечетких данных [94].

Одним из них является переход к модальным значениям соответствующих нечетких величин. Его применение приводит к следующей модели:

, (2.1.3)

(2.1.4)

где обозначает переход к модальным значениям нечетких величин.

Согласно результатам, представленными в первой главе диссертации,

.

Если нечеткие случайные величины при фиксированном принадлежат классу

, то

. Пусть , т.е. . Тогда, принимая во внимание доказанную в первой главе лемму 1.4.2, мы получаем при следующую модель, эквивалентную (2.1.1), (2.1.2),

, (2.1.5)

(2.1.6)

Полученная задача (2.1.5)-(2.1.6) есть задача квадратичного программирования. Она может быть решена стандартными методами [8].

 

2.2.2. Модель максимизации возможности (необходимости) достижения нечеткого уровня ожидаемой доходности при фиксированном уровне риска.

Следующий подход к решению задачи связан с ее рассмотрением в рамках модели нечеткого целевого программирования [59]. Его применение приводит к следующей модели:

(2.2.1)

(2.2.2)

где , есть четкое бинарное отношение: , есть нечеткий уровень притязаний критерия, приемлемый для инвестора.

Рассмотрим сначала случай , в модели критерия задачи. Тогда модель (2.2.1)-(2.2.2) имеет эквивалентную, которая может быть записана в форме

(2.2.3)

(2.2.4)

Прежде чем доказать теорему, позволяющую построить детерминированный эквивалент модели (2.2.3)-(2.2.4), приведем необходимую для ее доказательства лемму [59].

Лемма 2.2.1. Пусть где -минисвязные нечеткие величины, определенные на возможностном пространстве , . Тогда: .

 

Теперь мы готовы сформулировать и доказать следующую теорему.

Теорема 2.2.1. Пусть в задаче (2.2.3)-(2.2.4) возможностные параметры , являются минисвязанными, тогда задача (2.2.3)-(2.2.4) имеет эквивалентный детерминированный аналог следующего вида:

, (2.2.5)

(2.2.6)

где -дополнительная переменная.

Доказательство.

На основании определения меры возможности преобразуем целевую функцию следующим образом:

.

С учетом полученной формулы и леммы 2.2.1 исходная задача эквивалентна следующей задаче математического программирования.

.

Путем введения дополнительной переменной [59] модель критерия сводится к эквивалентной модели - задаче математического программирования.

С учетом модели ограничений (2.2.4) мы получаем утверждение теоремы.

Теорема доказана.

Полученная модель допускает сведение к сепарабельной задаче при некоторых дополнительных условиях.

Действительно. Преобразуем ограничение .

Для этого воспользуемся следующим равенством:

.

Введем дополнительные переменные: .

Тогда наше ограничение примет следующий вид: .

Это есть сепарабельное ограничение.

В результате наша задача (2.2.5)-(2.2.6) сводится к задаче математического программирования следующего вида.

, (2.2.7)

(2.2.8)

Таким образом, мы получили детерминированный аналог для задачи максимизации возможности достижения нечеткого уровня ожидаемой доходности при фиксированном уровне риска.

Далее, преобразуя выражение для дисперсии по уже известной формуле (теорема 1.4.1), а также принимая , получаем:

Если предположить, что параметры возможностного распределения являются независимыми случайными величинами, то

.

В результате наша задача (2.2.7)-(2.2.8) сводится к следующей сепарабельной задаче.

, (2.2.9)

(2.2.10)

Уточним полученную модель (2.2.9)-(2.2.10) для некоторых классов распределений.

Пусть ,

. Тогда модель (2.2.9)-(2.2.10) может быть преобразована к следующей эквивалентной модели:

, (2.2.11)

(2.2.12)

При ее построении мы учитываем вид распределений и то, что получающееся при этом неравенство

эквивалентно двум неравенствам

а неравенство

эквивалентно следующим неравенствам

Рассмотрим модель (2.2.1)-(2.2.2) в случае меры необходимости, . Получаем модель следующего вида.

(2.2.13)

(2.2.14)

Докажем соответствующую теорему.

Теорема 2.2.2. Пусть в задаче (2.2.13)-(2.2.14) возможностные параметры , являются минисвязанными, тогда задача (2.2.13)-(2.2.14) имеет эквивалентный детерминированный аналог следующего вида:

, (2.2.15)

(2.2.16)

Доказательство.

Имеем.

.

Следовательно модель (2.2.13) эквивалентна

.

Если распределения и непрерывны [91], то

и эквивалентная модель критерия имеет вид

.

Таким образом, модель (2.2.13)-(2.2.14) имеет следующий эквивалентный детерминированный аналог.

,

Теорема доказана.

Далее, преобразуя выражение для дисперсии по уже известной формуле (теорема 1.4.1), а также принимая , получаем:

Если предположить, что параметры возможностного распределения являются независимыми случайными величинами, то

.

Тогда наша задача будет иметь следующий вид.

, (2.2.17)

(2.2.18)







Дата добавления: 2015-09-04; просмотров: 401. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия