Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Взвешенная сумма нечетких случайных величин.





В контексте рассматриваемой проблемы портфельного анализа необходимо иметь соответствующие результаты для определения дисперсии и ожидаемого значение взвешенной суммы нечетких случайных величин.

Итак, пусть имеем несимметричных триангулярных нечетких случайных величин, - некоторые веса, такие, что . Будем рассматривать взвешенную сумму нечетких случайных величин:

.

Найдем математическое ожидание и дисперсию для данной взвешенной суммы.

Лемма 1.4.1. Пусть

, ,

, . Тогда математическое ожидание взвешенной суммы нечетких случайных величин исчисляется по формуле:

, (1.4.1)

где имеет распределение вида (1.3.2).

Доказательство.

Рассчитаем математическое ожидание. На основании леммы 1.1.2. и определения 1.1.18:

где имеет распределение вида (1.3.2).

Лемма доказана.

Лемма 1.4.2. Дисперсия взвешенной суммы нечетких случайных величин находится по формуле:

(1.4.2)

Доказательство.

Найдем , используя свойства (3),(4) из теоремы 1.2.1.

Итак:

На основании теоремы 1.2.1 можно преобразовать полученное выражение следующим образом:

Проведем обратные преобразования, осуществим группировку слагаемых, воспользуемся свойством (2) из теоремы 1.2.1. Имеем:

Лемма доказана.

Теорема 1.4.1. Пусть

, ,

, . Тогда дисперсия взвешенной суммы нечетких случайных величин вычисляется по формуле:

(1.3.1)

Доказательство.

Согласно лемме 1.4.2 дисперсия взвешенной суммы равна:

.

Обобщим лемму 1.3.1 и лемму 1.3.2 на случай нечетких случайных величин. Следовательно, имеем:

Проведем соответствующие подстановки.

Теорема доказана.

 







Дата добавления: 2015-09-04; просмотров: 631. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия