Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Взвешенная сумма нечетких случайных величин.





В контексте рассматриваемой проблемы портфельного анализа необходимо иметь соответствующие результаты для определения дисперсии и ожидаемого значение взвешенной суммы нечетких случайных величин.

Итак, пусть имеем несимметричных триангулярных нечетких случайных величин, - некоторые веса, такие, что . Будем рассматривать взвешенную сумму нечетких случайных величин:

.

Найдем математическое ожидание и дисперсию для данной взвешенной суммы.

Лемма 1.4.1. Пусть

, ,

, . Тогда математическое ожидание взвешенной суммы нечетких случайных величин исчисляется по формуле:

, (1.4.1)

где имеет распределение вида (1.3.2).

Доказательство.

Рассчитаем математическое ожидание. На основании леммы 1.1.2. и определения 1.1.18:

где имеет распределение вида (1.3.2).

Лемма доказана.

Лемма 1.4.2. Дисперсия взвешенной суммы нечетких случайных величин находится по формуле:

(1.4.2)

Доказательство.

Найдем , используя свойства (3),(4) из теоремы 1.2.1.

Итак:

На основании теоремы 1.2.1 можно преобразовать полученное выражение следующим образом:

Проведем обратные преобразования, осуществим группировку слагаемых, воспользуемся свойством (2) из теоремы 1.2.1. Имеем:

Лемма доказана.

Теорема 1.4.1. Пусть

, ,

, . Тогда дисперсия взвешенной суммы нечетких случайных величин вычисляется по формуле:

(1.3.1)

Доказательство.

Согласно лемме 1.4.2 дисперсия взвешенной суммы равна:

.

Обобщим лемму 1.3.1 и лемму 1.3.2 на случай нечетких случайных величин. Следовательно, имеем:

Проведем соответствующие подстановки.

Теорема доказана.

 







Дата добавления: 2015-09-04; просмотров: 631. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия