Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модель минимизации возможного риска при заданном уровне возможного дохода.





Модель имеет следующий вид:

, (2.4.1)

(2.4.2)

где есть заданный уровень возможного дохода.

Данная задача может быть решена с помощью метода множителей Лагранжа.

Сделаем некоторые преобразования.

Пусть , где - модальные значения .

Тогда задача (2.4.1)-(2.4.2) принимает следующий вид:

, (2.4.3)

(2.4.4)

Будем решать задачу (2.4.3)-(2.4.4) с помощью метода множителей Лагранжа. Функция Лагранжа в данном случае имеет вид:

.

Запишем в функции Лагранжа дисперсию в явном виде. В результате получаем:

.

Далее возьмем производные по всем , по и по . Получим следующие соотношения:

,

.

Присоединяя ограничение (2.4.2) мы приходим к системе уравнений:

где , .

Запишем полученные уравнения в матричной форме с использованием следующих обозначений:

Тогда наша система примет следующий вид:

Предполагаем, что ковариационная матрица С невырождена (), следовательно, существует обратная матрица .

Тогда: .

Подставляя это решение во второе и третье уравнения системы, получим уравнения для нахождения и .

Итак, получили:

Решим эту систему с помощью метода Крамера. Имеем:

,

.

Далее подставив и в выражение для , получаем:

.

 







Дата добавления: 2015-09-04; просмотров: 353. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия