Студопедия — Нечеткие множества
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нечеткие множества






 

Нечеткая логика возникла как наиболее удобный способ построения систем управления метрополитенами и сложными технологическими процессами, а также нашла применение в бытовой электронике, диагностических и других экспертных системах. Несмотря на то, что математический аппарат нечеткой логики впервые был разработан в США, активное развитие данного метода началось в Японии, и новая волна вновь достигла США и Европы.
В Японии до сих пор продолжается бум нечеткой логики и экспоненциально увеличивается количество патентов, большая часть которых относится к простым приложениям нечеткого управления.

Термин fuzzy (англ. нечеткий, размытый) В Японии исследования в области нечеткой логики получили широкую финансовую поддержку. В Европе и США усилия были направлены на то, чтобы сократить огромный отрыв от японцев. Так например, агенство космических исследований NASA стало использовать нечеткую логику в маневрах стыковки.

Нечеткая логика является многозначной логикой, что позволяет определить промежуточные значения для таких общепринятых оценок, как да|нет, истинно|ложно, черное|белое и т.п. Выражения подобные таким, как слегка тепло или довольно холодно возможно формулировать математически и обрабатывать на компьютерах.
Нечеткая логика появилась в 1965 в работах Лотфи А. Задэ (Lotfi A. Zadeh),профессора технических наук Калифорнийского университета в Беркли.


Что такое нечеткое множество?


Самым главным понятием систем, основанных на нечеткой логике, является понятие нечеткого (под)множества.

Из классической математики известно понятие четких (определенных) множеств.

 

Пример:

Рассмотрим множество X всех чисел от 0 до 10, котрое назовем универсумом рассуждения. Определим подмножество A множества X всех действительных чисел от 5 до 8.

A = [5,8]

Покажем характеристическую функцию множества A, эта функция ставит в соответсвие число 1 или 0 каждому элементу в X, в зависимости от того принадлежит данный элемент подмножеству A или нет. Результат представлен на следующем рисунке:

 

Можно интерпретировать элементы, которым поставлена в соответствие 1, как элементы, находящиеся во множестве A, а элементы, которым поставлен в соответствие 0, как элементы, не находящиеся во множестве A.

Эта концепция используется во многих областях приложений. Но можно легко обнаружить ситуации, в которых данной концепции будет недоставать гибкости.

В данном примере опишем множество молодых людей. Более формально можно записать так

B = {множество молодых людей}

Так как, вообще, возраст начинается с 0, то нижний предел этого множества должен быть нолем. Верхний предел определить немного сложнее. На первый раз установим верхний предел, скажем, равным 20 годам. Таким образом, получаем B как четко ограниченный интервал, буквально:

B = [0,20]

Возникает вопрос: почему кто-то в свой двадцатилетний юбиоей - молодой, а сразу на следующий день уже не молодой? Очевидно, это структурная проблема, и если передвинуть верхнюю границу в произвольную точку, то можно задаться точно таким же вопросом.

Более естественный путь получения множества B состоит в ослаблении строгого разделения на молодых и не молодых. Сделаем это, вынося не только (четкие) суждения Да, он|она принадлежит множеству молодых людей или Нет, он|она не принадлежит множеству молодых люей, но и более гибки формулировки ДА, он|она принадлежит к достаточно молодым людям или Нет, он|она не очень молод|молода.

На следующей странице рассмотрим как с помощью нечеткого множества определить такое выражение, как он|она еще молоды.

мы используем нечеткие множества, чтобы сделать компьютер более умным. Представим эту мысль более формализованно. В первом примере мы кодировали все элементы универсума рассуждения с помощью 0 или 1. Простой способ обобщить данную концепцию - ввести значения между 0 и 1. Реально можно даже допустить бесконечное число значений между 0 и 1, называемое единичным интервалом I = [0, 1].

Интерпретация чисел при соотнесении всех элементов универсума рассуждений становится теперь более сложной. Конечно, снова число 1 ставится в соответствие (соотносится) тому элементу, который принедлежит множеству B, а 0 означает, что элемент точно не принадлежит множеству B. Все другие значения определяют степень принадлежности ко множеству B.

Для наглядности приведем характеристическую функцию множества молодых людей, как и в первом примере.

То есть 25-летние все еще молоды со степенью 50 процентов.

Теперь вы поняли что такое нечеткое множество. Но что с ним можно делать?



Операции с нечеткими множествами


Сейчас, когда мы уже знаем, что такое нечеткие множества, попытаемся определить базовые операции (действия) над нечеткими множествами. Аналогично действиям с обычными множествами нам потребуется определить пересечение, объединение и отрицание нечетких множеств. В своей самой первой работе по нечетким множествам Л. А. Задэ предложил оператор минимума для пересечения и оператор максимума для объединения двух нечетких множеств. Легко видеть, что эти операторы совпадают с обычными (четкими) объединением и пересечением, только рассматриваются степени принадлежности 0 и 1.

Чтобы пояснить это, приведем несколько примеров. Пусть A нечеткий интервал от 5 до 8 и B нечеткое число около 4, как показано на рисунке.

Следующий пример иллюстрирует нечеткое множество между 5 и 8 И (AND) около 4 (синяя линия).

Нечеткое множество между 5 и 8 ИЛИ (OR) около 4 показано на следующем рисунке (снова синяя линия).

Следующий рисунок иллюстрирует операцию отрицания. Синяя линия - это ОТРИЦАНИЕ нечеткого множества A.

 







Дата добавления: 2015-09-04; просмотров: 653. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия