Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Triple Product of Vectors and its Properties





Definition. Thetriple product of three vectors is the inner product of the third vector by the vector product of the first two vectors; it is denoted by

.

Definition. The vector product of the vector product of the first two vectors and the third vector ones is called the double vector product:

.

Since double vector product is used very rarely, it have been little studied.

Property 1. The triple product of three vectors equals the volume of a parallelepiped spanned by these three vectors.

Corollary. It is easy to derive an expression for the volume of a pyramid from the formula:

S


B

А С

Vрyr= Sbase Н = . Sрar Н = Vрar= ,

Vрyr= .

The sign is needed to obtain a positive volume.

Property 2. Triple product is commutative, and

.

Property 3. A constant multiplier of any vector can be factored out of scalar triple product:

.

Triple Product in Coordinates. Given three vectors , , and , let us express the triple product of these vectors in terms of their coordinates. Consider the triple product

.

The vector product equals

.

Taking its inner product with , we obtain

;

 

this is a third – order determinant expanded along the last line, i.e.,

.

Thus, the triple product of three vectors equals the third – order determinant of the composed of the coordinates of these vectors.

Example 1. Determine the volume of a pyramid ABCD from the coordinates of its vertices.

 

D (1;5;2) B (–1;1;3) A (1;2;0) C (0;2;–3)   Compose the vectors   , , .  

Let us find the volume of a pyramid by the formulas proved above:

 







Дата добавления: 2015-09-04; просмотров: 695. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия