Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Consider two vectors





and .

Thus, six of the nine terms are zero, and the remaining three terms are

. (6)

The inner product of vectors is equal to the sum of products of their coordinates.

Example 1. -? and , then .

Example 2. and . Then

.

Let us derive a formula for the length of a vector by using inner product:

.

By (6), it equals

.

Thus, we obtain

 

.

The direction of a vector. Let us find the angle between two vectors and .

Consider the inner product

.

We have

. (*)

Writing the product and absolute values in coordinates, we obtain

. (**)

Example 3. Find an angle between vectors and . By using formula (**), we find

,

Let us determine a condition for vectors to be perpendicular. Suppose that vectors and are perpendicular, i.e., ; then , and

. (7)

This is the condition for vectors to be perpendicular.

z

0 y

x

Consider the angles between a vector and the unit vectors . We denote these angles by

; ; .

Take the product of and any unit vector, say, =

.

By formula (*), the cosine of the angle a from it is

.

Similarly the cosines of the other angles are

, , . (8)

These cosines are called the directional cosines of the vector .

The sum of the squared directional cosines equals one:

.

To prove this, it sufficies to square the cosines by formula (8) and sum them:

.

Example 5. For what a are the vectors

and

perpendicular?

We use the perpendicularity condition (7) and write the inner product of the given vectors in coordinates:

; , a=10.







Дата добавления: 2015-09-04; просмотров: 575. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия