Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Consider two vectors





and .

Thus, six of the nine terms are zero, and the remaining three terms are

. (6)

The inner product of vectors is equal to the sum of products of their coordinates.

Example 1. -? and , then .

Example 2. and . Then

.

Let us derive a formula for the length of a vector by using inner product:

.

By (6), it equals

.

Thus, we obtain

 

.

The direction of a vector. Let us find the angle between two vectors and .

Consider the inner product

.

We have

. (*)

Writing the product and absolute values in coordinates, we obtain

. (**)

Example 3. Find an angle between vectors and . By using formula (**), we find

,

Let us determine a condition for vectors to be perpendicular. Suppose that vectors and are perpendicular, i.e., ; then , and

. (7)

This is the condition for vectors to be perpendicular.

z

0 y

x

Consider the angles between a vector and the unit vectors . We denote these angles by

; ; .

Take the product of and any unit vector, say, =

.

By formula (*), the cosine of the angle a from it is

.

Similarly the cosines of the other angles are

, , . (8)

These cosines are called the directional cosines of the vector .

The sum of the squared directional cosines equals one:

.

To prove this, it sufficies to square the cosines by formula (8) and sum them:

.

Example 5. For what a are the vectors

and

perpendicular?

We use the perpendicularity condition (7) and write the inner product of the given vectors in coordinates:

; , a=10.







Дата добавления: 2015-09-04; просмотров: 575. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия