Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Классификация нейронных сетей и их свойства





Нейронная сеть представляет собой совокупность нейронных элементов, определенным образом соединенных друг с другом и с внешней средой с помощью связей, определяемых ве­совыми коэффициентами. В зависимости от функциональности выделяют три типа нейронов в нейронной сети:

- входные нейроны, на которые подается вектор входных сигналов;

- выходные нейроны, выходные значения которых представляют выходы НС;

- промежуточные нейроны, составляющие основу нейронных сетей.

В большинстве моделей НС тип нейрона связан с его расположением в сети. Если нейрон имеет только выходные связи, то это входной нейрон, если наоборот - выходной нейрон. Однако возможен случай, когда выход топологически внутреннего нейрона рассматривается как часть выхода сети. В целом процессе функциониро­вания сети осуществляется преобразование входного вектора сигналов в выходной.

Конкретный вид выполняемого сетью преобразования данных обусловливается не только характеристиками нейронных элементов, но и особен­ностями архитектуры НС, а именно топологией межнейронных свя­зей, выбором определенных нейронных элемен­тов для ввода и вывода информации, способами обучения сети, наличием или отсутствием конкуренции между нейронами, на­правлением и способами управления и синхронизации передачи информации между нейронами.

С точки зрения топологии можно выделить три основных ти­па НС:

а) полносвязные; б) многослойные; в) слабосвязные.

В полносвязных нейронных сетях каждый нейрон передает свой выходной сигнал остальным нейронам, в том числе и самому себе. Все входные сигналы подаются всем нейронам. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети.

В многослойных нейронных сетях нейроны объединяются в слои. Слой содержит совокупность нейронов с едиными входными сигналами. Число нейронов в слое может быть любым и не зави­сит от количества нейронов в других слоях. В общем случае сеть состоит из Q слоев, пронумерованных слева направо. Внешние входные сигналы подаются на входы нейронов входного слоя (его часто нумеруют как нулевой), а выходами сети являются выходные сигналы последнего слоя. Кроме входного и выходного слоев в многослойной нейронной сети есть один или несколько скрытых слоев. Связи от выходов нейронов некоторого слоя q к входам нейронов следующего слоя (q+1) называются последовательными.

Среди многослойных нейронных сетей вы­деляют следующие типы.

1) Монотонные. Это частный случай многослойных сетей с дополнительными ус­ловиями на связи и нейроны. Каждый слой кроме вы­ходного разбит на два блока: возбуждающий и тормозящий. Связи между блоками тоже разделяются на тормозящие и возбуждаю­щие. Если от нейронов блока А к нейронам блока В ведут только возбуждающие связи, то это означает, что любой выходной сигнал блока является монотонной неубывающей функцией любого вы­ходного сигнала блока А. Если же эти связи только тормозящие, то любой выходной сигнал блока В является невозрастающей функ­цией любого выходного сигнала блока А. Для нейронов монотон­ных сетей необходима монотонная зависимость выходного сигна­ла нейрона от параметров входных сигналов.

2) Сети без обратных связей. В таких сетях нейроны вход­ного слоя получают входные сигналы, преобразуют их и передают нейронам первого скрытого слоя, и так далее вплоть до выходного слоя. Среди сетей данного типа различают полносвязанные (выход каждого нейрона q-ro слоя связан с входом каждого нейрона (q+1)-го слоя) и частично полносвязанные.

Пример многослойной (двухслойной) сети прямого распространения.

3) Сети с обратными связями. В таких сетях информация с последующих слоев передается на предыдущие.

Пример: частично-рекуррентные сети Элмана (а) и Жордана (б).

В слабосвязных нейронных сетях нейроны располагаются в узлах прямоугольной или гексагональной решетки. Каждый нейрон связан с четырьмя (окрестность фон Неймана), шестью (окрест­ность Голея) или восемью (окрестность Мура) своими ближайшими соседями.

Нейронные сети можно разделить по типам струк­тур нейронов на гомогенные (однородные) и гетерогенные. Гомо­генные сети состоят из нейронов одного типа с единой функцией активации, а в гетерогенную сеть входят нейроны с различными функциями активации.

Выбор структуры нейронной сети осуществляется в соответ­ствии с особенностями и сложностью задачи. Для решения от­дельных типов задач уже существуют оптимальные конфигурации НС. Если же задача не может быть сведена ни к одному из известных типов, приходится решать сложную про­блему синтеза новой архитектуры. При этом необходимо руково­дствоваться следующими правилами:

- возможности сети возрастают с увеличением числа нейронов сети, плотности связей между ними и числа слоев;

- введение обратных связей наряду с увеличением возможностей сети поднимает вопрос о динамической устойчивости сети;

- сложность алгоритмов функционирования сети, введение нескольких типов синапсов способствует усилению мощности нейронной сети.

Вопрос о необходимых и достаточных свойствах сети для решения задач того или иного рода представляет собой целое на­правление нейрокомпьютерной науки. Так как проблема синтеза нейронной сети сильно зависит от решаемой задачи, дать общие подробные рекомендации затруднительно. В большинстве случаев оптимальный вариант получается на основе интуитивного подбо­ра, хотя в литературе приведены доказательства того, что для лю­бого алгоритма существует нейронная сеть, которая может его реализовать.

Многие задачи распознавания образов (зрительных, рече­вых), выполнения функциональных преобразований при обработке сигналов, управления, прогнозирования, идентификации сложных систем, сводятся к следующей математической постановке. Необ­ходимо построить такое отображение X -> У, чтобы на каждый возможный входной сигнал X формировался правильный выход­ной сигнал Y. Отображение задается конечным набором пар (<вход>, <известный выход>). Число этих пар (обучающих приме­ров) существенно меньше общего числа возможных сочетаний значений входных и выходных сигналов. Совокупность всех обу­чающих примеров носит название обучающей выборки.

В задачах распознавания образов X - некоторое представ­ление образа (изображение, вектор), У - номер класса, к которому принадлежит входной образ.

В задачах управления X - набор контролируемых парамет­ров управляемого объекта, У - код, определяющий управляющее воздействие, соответствующее текущим значениям контролируе­мых параметров.

В задачах прогнозирования в качестве входных сигналов ис­пользуются временные ряды, представляющие значения контро­лируемых переменных на некотором интервале времени. Выход­ной сигнал - множество переменных, которое является подмноже­ством переменных входного сигнала.

Вообще говоря, большая часть прикладных задач может быть сведена к реализации некоторого сложного функционального многомерного преобразования X -> У, при котором необходимо обеспечить формирование правильных выходных сигналов нейронной сети в соответствии со всеми примерами из обучающей выборки.

 







Дата добавления: 2015-09-04; просмотров: 3838. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия