Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон распределения вероятностей дискретной случайной величины





На первый взгляд может показаться, что для задания дискретной случайной величины достаточно пере­числить все ее возможные значения. В действительности это не так: случайные величины могут иметь одинако­вые. перечни возможных значений, а вероятности их — различные. Поэтому для задания дискретной случайной величины недостаточно перечислить все возможные ее значения, нужно еще указать их вероятности.

Законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями; его можно задать таблично, аналити­чески (в виде формулы) и графически.

При табличном задании закона распределения дискрет­ной случайной величины первая строка таблицы содержит возможные значения, а вторая — их вероятности:

X xt... хп

Р Pi Pt ••• Рп

Приняв во внимание, что в одном испытании случайная величина принимает- одно и только одно возможное зна­чение, заключаем, что события Х = х Х = xt, X =хп образуют полную группу; следовательно, сумма вероят­ностей этих событий, т. е. сумма вероятностей второй строки таблицы, равна единице:

Pi + P*+--- +РЛ=1-

Если множество возможных значений X бесконечно (счетно), то ряд px + pg+... сходится и его сумма равна единице.

Пример. В денежной лотерее выпущено 100 билетов. Разыгры­вается один выигрыш в 50 руб. и десять выигрышей по 1 руб. Найти закон распределения случайной величины X — стоимости возможного выигрыша для владельца одного лотерейного билета'.

Решение. Напншем возможные значения X: *i = 50, хх= 1, дс2 = 0. Вероятности этих возможных значений таковы: рх = 0,01, Pt = 0,01, Ря=1—(Рх + Р*) =0,89.

Напишем искомый закон распределения:

X 50 10 0 р 0,01 0,1 0,89

Контроль: 0,01+0,1+0,89=1.

Для наглядности закон распределения дискретной случайной величины можно изобразить и графически, для чего в прямоугольной системе координат строят точки{, pi), а затем соединяют их отрезками прямых. Полученную фигуру называют многоугольником распре­деления.







Дата добавления: 2015-09-06; просмотров: 511. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия