Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Распределение Пуассона





Пусть производится п независимых испытаний, в каждом из которых вероятность появления события А равна р. Для определения вероятности k появлений со­бытия в этих испытаниях используют формулу Бернулли. Если же п велико, то пользуются асимптотической фор­мулой Лапласа. Однако эта формула непригодна, если вероятность события мала (р^0,1). В этих случаях (п велико, р мало) прибегают к асимптотической формуле Пуассона.

Итак, поставим перед собой задачу найти вероятность того, что при очень большом числе испытаний, в каждом из которых вероятность события очень мала, событие наступит ровно k раз. Сделаем важное допущение: про­изведение пр сохраняет постоянное значение, а именно пр = к. Как будет следовать из дальнейшего (см. гл. VII, § 5), это означает, что среднее число появлений события в различных сериях испытаний, т. е. при различных значениях п, остается неизменным.

Воспользуемся формулой Бернулли для вычисления интересующей нас вероятности:

Рп ( k) = «,(«- П (Д-2)- Лп-(к- 1)1 р*

Так как р/г = Х, то р — к/п. Следовательно,

■><—(£)*(!—А)"-*.

Приняв во внимание, что п имеет очень большое значе­ние, вместо Pn{k) найдем lim Рп (k). При этом будет най-

Л —► 00

дено лишь приближенное значение отыскиваемой вероят­ности: п хотя и велико, но конечно, а при отыскании предела мы устремим п к бесконечности. Заметим, что поскольку произведение пр сохраняет постоянное значе­ние, то при п —>-оо вероятность р —>-0.

Итак,

п,и, п{п — I) (п — 2)...[п — (к —1)1 %к {.

PAk)^hm^—lJ!—< _

-ifii*. [‘-(‘Ч) (<-!)•• («- 4 П-

Таким образом (для простоты записи знак приближен­ного равенства опущен),

Рп (k) = №e~x/k\







Дата добавления: 2015-09-06; просмотров: 476. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия