Дисперсия дискретной случайной величины
На практике часто требуется оценить рассеяние возможных значений случайной величины вокруг ее среднего значения. Например, в артиллерии важно знать, насколько кучно лягут снаряды вблизи цели, которая должна быть поражена. На первый взгляд может показаться, что для оценки рассеяния проще всего вычислить все возможные значения отклонения случайной величины и затем найти их среднее значение. Однако такой путь ничего не даст, так как среднее значение отклонения, т. е. М [X— М (X)], для любой случайной величины равно нулю. Это свойство уже было доказано в предыдущем параграфе и объясняется тем, что одни возможные отклонения положительны, а другие — отрицательны; в результате их взаимного погашения среднее значение отклонения равно нулю. Эти соображения говорят о целесообразности заменить возможные отклонения их абсолютными значениями или их квадратами. Так и поступают на деле. Правда, в случае, когда возможные отклонения заменяют их абсолютными значениями, приходится оперировать с абсолютными величинами, что приводит иногда к серьезным затруднениям. Поэтому чаще всего идут по другому пути, т. е. вычисляют среднее значение квадрата отклонения, которое и называют дисперсией. Дисперсией (рассеянием) дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания: D(X) = M[X — М(Х)]2. Пусть случайная величина задана законом распределения X х± х%... хп Р Pi Рг * • • Рп Тогда квадрат отклонения имеет следующий закон распределения: [X — М (X )]4 [х, —М (X )]2 [х 2 -М(Х)]’... [х„-М(Х)р Р Pi Рг Рп
|