Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дисперсия дискретной случайной величины





На практике часто требуется оценить рассеяние возможных значений случайной величины вокруг ее сред­него значения. Например, в артиллерии важно знать, насколько кучно лягут снаряды вблизи цели, которая должна быть поражена.

На первый взгляд может показаться, что для оценки рассеяния проще всего вычислить все возможные значения отклонения случайной величины и затем найти их сред­нее значение. Однако такой путь ничего не даст, так как среднее значение отклонения, т. е. М [X— М (X)], для любой случайной величины равно нулю. Это свойство уже было доказано в предыдущем параграфе и объясняется тем, что одни возможные отклонения положительны, а другие — отрицательны; в результате их взаимного пога­шения среднее значение отклонения равно нулю. Эти со­ображения говорят о целесообразности заменить возмож­ные отклонения их абсолютными значениями или их квадратами. Так и поступают на деле. Правда, в случае, когда возможные отклонения заменяют их абсолютными значениями, приходится оперировать с абсолютными ве­личинами, что приводит иногда к серьезным затруднениям. Поэтому чаще всего идут по другому пути, т. е. вычисляют среднее значение квадрата отклонения, которое и назы­вают дисперсией.

Дисперсией (рассеянием) дискретной случайной вели­чины называют математическое ожидание квадрата откло­нения случайной величины от ее математического ожидания:

D(X) = M[X — М(Х)]2.

Пусть случайная величина задана законом распреде­ления

X х± х%... хп Р Pi Рг * • • Рп Тогда квадрат отклонения имеет следующий закон рас­пределения:

[X — М (X )]4 [х, —М (X )]22 -М(Х)]’... [х„-М(Х)р Р Pi Рг Рп







Дата добавления: 2015-09-06; просмотров: 614. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия