Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение стационарной случайной функции





Среди случайных функций целесообразно выде­лить класс функций, математические ожидания которых сохраняют одно и то же постоянное значение при всех значениях аргумента t и корреляционные функции кото­рых зависят только от разности аргументов t2 tt. Ясно, что для таких функций начало отсчета аргумента может быть выбрано произвольно. Такие случайные функции называют «стационарными в широком смысле» в отличие от случайных функций, «стационарных в узком смысле» (все характеристики этих функций не зависят от самих значений аргументов, но зависят от их взаимного рас­положения на оси t).

Из стационарности в узком смысле следует стацио­нарность в широком смысле; обратное утверждение не­верно.

Поскольку мы ограничиваемся корреляционной тео­рией, которая использует только две характеристики (математическое ожидание и корреляционную функцию), далее рассмотрим случайные функции, стационарные в широком смысле, причем будем их называть просто ста­ционарными. р

Стационарной называют случайную функцию X (t), математическое ожидание которой постоянно при всех значениях аргумента t и корреляционная функция кото­рой зависит только от разности аргументов t2 —Из этого определения следует, что:

корреляционная функция стационарной случайной функции есть функция одного аргумента т — tt tt, т. е.

Kx(tt, tt) = kx(t2 — tl) = kx(xy, (*)

дисперсия стационарной случайной функции по­стоянна при всех значениях аргумента t и равна значе­нию ее корреляционной функции в начале координат (т = 0), т. е.

Dx(t) = Kx{t, t) = kx(t-t)=kx(0). (**)

Пример. Задана случайная функция X (t) = cos (/ 4-<р), где <р — случайная величина, распределенная равномерно в интервале (0, 2я). Доказать, что X (/) — стационарная случайная функция.

Решение. Найдем математическое ожидание:

тх (t) — M [cos (t —J— <p)J = M [cos t cos ф—sin t sin <p]=cos tM (cos q>)—

sin tM (sin <p).

Используя формулы (**) нз гл. XII, § 11 и (*) из гл. XI, § 6, по­лучим:

Л

М (cos ф) = J cos ф <*ф = 0 и М (sin ф) = 0.

о

Следовательно, mx(t) = 0.

Найдем корреляционную функцию, учитывая, что цеитрнроваи- ная функция У(( t) = X (/) — тх ( t)=X (t) = cos (/+ф):

KxVi. (/t) к (/a)] = M [cos (^ + ф) cos (/, + <p)J =

M |^cos + COS (/, + ^i + 2<P) j cos

(Легко убедиться, что M [cos (/* + ^1 + 2ф)1 = 0.)

Итак, математическое ожидание случайной функции X (/) по­стоянно при всех значениях аргумента и ее корреляционная функ­ция зависит только от разности аргументов. Следовательно, X (/) — стационарная случайная функция.

Заметим, что, положив t1 — t2 = i в корреляционной функции, найдем дисперсию Dx(t) — Kx(t, O = lcos (t — 01/2=1/2. Таким обра­зом, дисперсия сохраняет постоянное значение при всех значениях аргумента, как и должно быть для стационарной случайной фуакции,







Дата добавления: 2015-09-06; просмотров: 601. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия