Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Видим, что в левой части равенства сначала находят интеграл, а затем математическое ожидание; в правой части — наоборот.





Пример 1. Зная математическое ожидание /пж(/) = 2/+1 случай­ной функции X (/), найти математическое ожидание интеграла

t

y(0=Jx(s)*.

о

Решение. Искомое математическое ожидание t i ту (0= ^ mx(s)ds— J (2s+l)ds= /2 + /.

О о

Теорема 2. Корреляционная функция интеграла от случайной функции X (0 равна двойному интегралу от ее корреляционной функции:

Если

Г (f)=$ X(s)ds,

То

Ky(h, ^t)== J J Кх ($i» sa)dstdst. о о

Доказательство. По определению корреляцион­ной функции,

Kv(t» /,) = М[^(/1) * (/,)].

Центрированная случайная функция

< i

У (0 = у (о—<0 = S х (s>ds—5 Л*ж (5><is =

О о

t

[X (s)—mx(s)]ds,

Или

УЧ0 = $X(s)ds. (*)

о

Поскольку под знаком определенного интеграла перемен­ную интегрирования можно обозначать любой буквой, обозначим переменную интегрирования в одном интеграле через Sl а в другом—через st (чтобы отличить перемен­ные интегрирования и пределы интегрирования):

<*,) = 5 к (Sl) dslt Y «,) =» S X (s.) dsa.

О 0

Следовательно,

if i| tf

^(tJY (t,) = J X (sj dst S X (st) ds, = S S X (sx) X («,) dst dst. a о oo

Приравняем математические ожидания обеих частей ра­венства:

Изменив порядок операций нахождения математичес­кого ожидания и интегрирования, окончательно получим

I,

Ку (tlt *.) *= S S Кх (Si. st) dst dsa. (**)

О 0

Пример 2. Зная корреляционную функцию Кх *») = 4*1*2 ■+ -J- 9/*/* случайной функции X (/)> найти корреляционную функцию

интеграла У (t) = ^ X (s) ds.

О

Решение. Используя формулу (**), найдем f 1

Ky(tu /2)= J J (4s!s2 + 9s?sl) dsldsi. о о

Выполнив интегрирование, получим искомую корреляционную функ­цию:

Ky(tu t2) — t]t\ (1 +V*)- Теорема 3. Взаимная корреляционная cf/ункция случай-

-I

ной функции X (/) и интеграла Y (0 = § X (s) ds равна

о

интегралу от корреляционной функции случайной функ­ции X (t):

T.

а) Rxvih, s)ds;

О t.

б) RyAti, #,) = t2)ds.







Дата добавления: 2015-09-06; просмотров: 531. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия