Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Производная случайной функции и ее характеристики





При изучении случайных величин встречалось понятие сходимости по вероятности. Для изучения слу­чайных функций необходимо ввести среднеквадратичную сходимость.

Говорят, что последовательность случайных величин Xt, Х2, ..., Х„,. .. сходится в среднеквадратичном к слу­чайной величине X, если математическое ожидание квад­рата разности Хп X стремится к нулю при п —►оо:

М[(Хп-ХУ} = 0.

Случайную величину X называют пределом в среднеквад­ратичном последовательности случайных величин Xlf Х3 ,..., Х„, ... и пишут

X = l.i.m.X,,.

Заметим, что из среднеквадратичной сходимости сле­дует сходимость по вероятности; обратное утверждение, вообще говоря, неверно.

Случайную функцию X (0 называют дифференцируе­мой, если существует такая функция X’ ( t ) (ее называют производной), что

lim м\Х<* + Ар-Х (/) X' (018 = О- д/-*о I J

Итак, производной случайной функции X (0 называют среднеквадратичный предел отношения приращения функ­ции к приращению аргумента Д/ при Д/—*-0:

Х'(0 = ы.ш. ху+ч-тхж.

Д<-*0 m

Пусть известны характеристики случайной функции. Как найти характеристики ее производной? Ответ на этот вопрос дают теоремы, приведенные ниже, причем рас­сматриваются только среднеквадратично дифференцируемые случайные функции.

Теорема 1. Математическое ожидание производной X’(t) = x от случайной функции X(t) равно производной от ее математического ожидания:

mk (t) — mx(t).







Дата добавления: 2015-09-06; просмотров: 1016. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия