Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Взаимная корреляционная функция





Для того чтобы оценить степень зависимости сечений двух случайных функций, вводят характери­стику— взаимную корреляционную функцию.

Рассмотрим две случайные функции X ( t ) и Y(t). При фиксированных значениях аргумента, например t = tl и t = t2, получим два сечения — систему двух случайных величин X (fj и К ( t 2) с корреляционным моментом Л1 У" (^а)]- Таким образом, каждая пара чисел

и tt определяет систему двух случайных величин, а каж­дой такой системе соответствует ее корреляционный мо­мент. Отсюда следует, что каждой паре фиксированных значений tx и 1г соответствует определенный корреляци­онный момент; это означает, что взаимная корреляцион­ная функция двух случайных функций есть функция (не­случайная) двух независимых аргументов t1 и tt; ее обозначают через Rxy(tt, tt). Дадим теперь определение взаимной корреляционной функции.

Взаимной корреляционной функцией двух случайных функций X (() и Y (t) называют неслучайную функцию Rx>J{t j, t2) двух независимых аргументов tt и t2, значе-


ние которой при каждой паре фиксированных значений аргументов равно корреляционному моменту сечений обеих функций, соответствующих этим же фиксированным зна­чениям аргументов:

Rxv(t„ и) = м[Х(цГуш)1

Коррелированными называют две случайные функции, если их взаимная корреляционная функция не равна тождественно нулю.

Некоррелированными называют две случайные функции, взаимная корреляционная функция которых тождественно равна нулю.

Пример. Найти взаимную корреляционную функцию двух слу­чайных функций X (t) = tU и К (t) = t2U, где {/—случайная величина, причем £)({/) = 3.

Решение. Найдем математические ожидания:

тх (t) = M(tU) = tma, ту (t) = М (t2U) = t*ma.

Найдем центрированные функции:

k(t) — X (t)—mx(t)—tU — tma = t(U — mu),

Y (t) = Y (t)-mv{t) = t*U-/4='a (U ~mu).

Найдем взаимную корреляционную функцию:

Rxv (h, h) = M[k (/j) 9 (/,)] = M {[ft (U —m„)] [/1 (U -m„)]} =

= txtl M [(U — ma)2]= t{t\ D(U) — 3t1tl.







Дата добавления: 2015-09-06; просмотров: 532. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия