Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Взаимная корреляционная функция





Для того чтобы оценить степень зависимости сечений двух случайных функций, вводят характери­стику— взаимную корреляционную функцию.

Рассмотрим две случайные функции X ( t ) и Y(t). При фиксированных значениях аргумента, например t = tl и t = t2, получим два сечения — систему двух случайных величин X (fj и К ( t 2) с корреляционным моментом Л1 У" (^а)]- Таким образом, каждая пара чисел

и tt определяет систему двух случайных величин, а каж­дой такой системе соответствует ее корреляционный мо­мент. Отсюда следует, что каждой паре фиксированных значений tx и 1г соответствует определенный корреляци­онный момент; это означает, что взаимная корреляцион­ная функция двух случайных функций есть функция (не­случайная) двух независимых аргументов t1 и tt; ее обозначают через Rxy(tt, tt). Дадим теперь определение взаимной корреляционной функции.

Взаимной корреляционной функцией двух случайных функций X (() и Y (t) называют неслучайную функцию Rx>J{t j, t2) двух независимых аргументов tt и t2, значе-


ние которой при каждой паре фиксированных значений аргументов равно корреляционному моменту сечений обеих функций, соответствующих этим же фиксированным зна­чениям аргументов:

Rxv(t„ и) = м[Х(цГуш)1

Коррелированными называют две случайные функции, если их взаимная корреляционная функция не равна тождественно нулю.

Некоррелированными называют две случайные функции, взаимная корреляционная функция которых тождественно равна нулю.

Пример. Найти взаимную корреляционную функцию двух слу­чайных функций X (t) = tU и К (t) = t2U, где {/—случайная величина, причем £)({/) = 3.

Решение. Найдем математические ожидания:

тх (t) = M(tU) = tma, ту (t) = М (t2U) = t*ma.

Найдем центрированные функции:

k(t) — X (t)—mx(t)—tU — tma = t(U — mu),

Y (t) = Y (t)-mv{t) = t*U-/4='a (U ~mu).

Найдем взаимную корреляционную функцию:

Rxv (h, h) = M[k (/j) 9 (/,)] = M {[ft (U —m„)] [/1 (U -m„)]} =

= txtl M [(U — ma)2]= t{t\ D(U) — 3t1tl.







Дата добавления: 2015-09-06; просмотров: 532. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия