Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дисперсия случайной функции





Рассмотрим случайную функцию X ( t ). При фиксированном значении аргумента, например при t — tu получим сечение — случайную величину X (tj с диспер­сией Z)[X 0 (предполагается, что дисперсия любого сечения существует). Таким образом, каждое фиксирован* ное значение аргумента определяет сечение — случайную величину, а каждой случайной величине соответствует ее дисперсия. Отсюда следует, что каждому фиксирован­ному значению аргумента t соответствует определенная дисперсия; это означает, что дисперсия случайной функ­ции есть функция (неслучайная, причем неотрицательная) от аргумента t\ ее обозначают через Dx ( t ). В частном случае Dx ( t) может сохранять постоянное значение при всех допустимых значениях аргумента. Дадим теперь определение дисперсии.

Дисперсией случайной функции X ( t) называют неслу- чайную[неотрицательнуюфункцию Dx(t), значение которой при каждом фиксированном значении аргумента t равно дисперсии сечения, соответствующего этому же фиксиро­ванному значению аргумента:

Dx(t) = D[X (0].

Дисперсия характеризует степень рассеяния возмож­ных реализаций (кривых) вокруг математического ожи­дания случайной функции («средней кривой»). При фик­сированном значении аргумента дисперсия характеризует степень рассеяния возможных значений (ординат) сечения вокруг математического ожидания сечения («средней ординаты»).

Часто вместо дисперсии рассматривают среднее квад­ратическое отклонение случайной функции, которое определяют по аналогии со средним квадратическим отклонением случайной величины.

Средним квадратическим отклонением случайной функ­ции называют квадратный корень из дисперсии:







Дата добавления: 2015-09-06; просмотров: 439. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия