Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Математическое ожидание случайной функции





Рассмотрим случайную функцию X (t). При фиксированном значении аргумента, например при t = tt, получим сечение—случайную величину X (tx) с матема­тическим ожиданием М [X (ft)]. (Полагаем, что математи­ческое ожидание любого сечения существует.) Таким образом, каждое фиксированное значение аргумента опре­деляет сечение—случайную величину, а каждой слу­чайной величине соответствует ее математическое ожи­дание. Отсюда следует, что каждому фиксированному значению аргумента t соответствует определенное мате­матическое ожидание; это означает, что математическое ожидание случайной функции есть функция (неслучайная) от аргумента /; ее обозначают через mx(t). В частном случае функция тх ( t) может сохранять постоянное зна­чение при всех допустимых значениях аргумента. Дадим теперь определение математического ожидания.

Математическим ожиданием случайной функции X ( t) называют неслучайную функцию mx(t), значение которой при каждом фиксированном значении аргумента t равно математическому ожиданию сечения, соответствующего этому же фиксированному значению аргумента:

т*(0 = Л*[*(0].

Геометрически математическое ожидание случайной функции можно истолковать как «среднюю кривую», около которой расположены другие кривые—реализации; при фиксированном значении аргумента математическое ожи­дание есть среднее значение сечения («средняя ордината»), вокруг которого расположены его возможные значения (ординаты).







Дата добавления: 2015-09-06; просмотров: 426. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия