Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Математическое ожидание случайной функции





Рассмотрим случайную функцию X (t). При фиксированном значении аргумента, например при t = tt, получим сечение—случайную величину X (tx) с матема­тическим ожиданием М [X (ft)]. (Полагаем, что математи­ческое ожидание любого сечения существует.) Таким образом, каждое фиксированное значение аргумента опре­деляет сечение—случайную величину, а каждой слу­чайной величине соответствует ее математическое ожи­дание. Отсюда следует, что каждому фиксированному значению аргумента t соответствует определенное мате­матическое ожидание; это означает, что математическое ожидание случайной функции есть функция (неслучайная) от аргумента /; ее обозначают через mx(t). В частном случае функция тх ( t) может сохранять постоянное зна­чение при всех допустимых значениях аргумента. Дадим теперь определение математического ожидания.

Математическим ожиданием случайной функции X ( t) называют неслучайную функцию mx(t), значение которой при каждом фиксированном значении аргумента t равно математическому ожиданию сечения, соответствующего этому же фиксированному значению аргумента:

т*(0 = Л*[*(0].

Геометрически математическое ожидание случайной функции можно истолковать как «среднюю кривую», около которой расположены другие кривые—реализации; при фиксированном значении аргумента математическое ожи­дание есть среднее значение сечения («средняя ордината»), вокруг которого расположены его возможные значения (ординаты).







Дата добавления: 2015-09-06; просмотров: 426. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия