Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Корреляционная функция случайной функции





Рассмотрим случайную функцию X ( t ). При двух фиксированных значениях аргумента, например при/ = /1 и t = t3, получим два сечения — систему двух случайных величин X (^) и X (tt) с корреляционным моментом М [*(<,) *(*,)], где

Таким образом, каждая пара чисел tt и t2 определяет систему двух случайных величин, а каждой такой системе соответствует ее корреляционный момент. Отсюда сле­дует, что каждой паре фиксированных значений и t% соответствует определенный корреляционный момент; это означает, что корреляционный момент случайной функ­ции есть функция (неслучайная) двух независимых аргу­ментов <г и /г; ее обозначают через Кх (<г, t3). В частном случае значения обоих аргументов могут быть равны между собой.

Приведем теперь определение корреляционной функции.

Корреляционной функцией случайной функции X ( t ) называют неслучайную функцию Кх (tJt t3) двух незави­симых аргументов tt и t%, значение которой при каждой паре фиксированных значений аргументов равно корре­ляционному моменту сечений, соответствующих этим же фиксированным значениям аргументов:

Kx(tu <,) = М[*(*г)*(<«)].

Замечание. При равных между собой значениях аргументов

— t корреляционная функция случайной функции равна дис­персии этой функции:

Kx(t, t)=*Dx(t).

Действительно, учитывая, что

Dx (0 = М [X - тх </)1* = М [Л (01*.







Дата добавления: 2015-09-06; просмотров: 434. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия