Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Корреляционная функция случайной функции





Рассмотрим случайную функцию X ( t ). При двух фиксированных значениях аргумента, например при/ = /1 и t = t3, получим два сечения — систему двух случайных величин X (^) и X (tt) с корреляционным моментом М [*(<,) *(*,)], где

Таким образом, каждая пара чисел tt и t2 определяет систему двух случайных величин, а каждой такой системе соответствует ее корреляционный момент. Отсюда сле­дует, что каждой паре фиксированных значений и t% соответствует определенный корреляционный момент; это означает, что корреляционный момент случайной функ­ции есть функция (неслучайная) двух независимых аргу­ментов <г и /г; ее обозначают через Кх (<г, t3). В частном случае значения обоих аргументов могут быть равны между собой.

Приведем теперь определение корреляционной функции.

Корреляционной функцией случайной функции X ( t ) называют неслучайную функцию Кх (tJt t3) двух незави­симых аргументов tt и t%, значение которой при каждой паре фиксированных значений аргументов равно корре­ляционному моменту сечений, соответствующих этим же фиксированным значениям аргументов:

Kx(tu <,) = М[*(*г)*(<«)].

Замечание. При равных между собой значениях аргументов

— t корреляционная функция случайной функции равна дис­персии этой функции:

Kx(t, t)=*Dx(t).

Действительно, учитывая, что

Dx (0 = М [X - тх </)1* = М [Л (01*.







Дата добавления: 2015-09-06; просмотров: 434. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия