Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Корреляционная функция случайной функции





Рассмотрим случайную функцию X ( t ). При двух фиксированных значениях аргумента, например при/ = /1 и t = t3, получим два сечения — систему двух случайных величин X (^) и X (tt) с корреляционным моментом М [*(<,) *(*,)], где

Таким образом, каждая пара чисел tt и t2 определяет систему двух случайных величин, а каждой такой системе соответствует ее корреляционный момент. Отсюда сле­дует, что каждой паре фиксированных значений и t% соответствует определенный корреляционный момент; это означает, что корреляционный момент случайной функ­ции есть функция (неслучайная) двух независимых аргу­ментов <г и /г; ее обозначают через Кх (<г, t3). В частном случае значения обоих аргументов могут быть равны между собой.

Приведем теперь определение корреляционной функции.

Корреляционной функцией случайной функции X ( t ) называют неслучайную функцию Кх (tJt t3) двух незави­симых аргументов tt и t%, значение которой при каждой паре фиксированных значений аргументов равно корре­ляционному моменту сечений, соответствующих этим же фиксированным значениям аргументов:

Kx(tu <,) = М[*(*г)*(<«)].

Замечание. При равных между собой значениях аргументов

— t корреляционная функция случайной функции равна дис­персии этой функции:

Kx(t, t)=*Dx(t).

Действительно, учитывая, что

Dx (0 = М [X - тх </)1* = М [Л (01*.







Дата добавления: 2015-09-06; просмотров: 434. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия