Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Предварительные сведения





2.1.1. Пусть X — универсальное множество, х — элемент X, а К — некоторое свойство. Обычное (четкое) подмножество А универсального множества X, элементы которого удовлетворяют свойству К, определяется как множество упорядоченных пар

A = { μA(x) / x } ,

где μA(x)характеристическая функция, принимающая значение 1, если х удовлетворяет свойству К, и 0 — в противном случае. Нечеткое подмножество отличается от обычного тем, что для элементов х из X нет однозначного ответа «да-нет» относительно свойства К. В связи с этим нечеткое подмножество А универсального множества X определяется как множество упорядоченных пар

A = { μA(x) / x } ,

где μA(x) — характеристическая функция принадлежности (или просто функция принадлежности), принимающая значения в некотором вполне упорядоченном множестве М (например, М = = [0,1]). Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А. Множество М называют множеством принадлежностей. Если М = {0, 1}, то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

2.1.2. Пусть М = [0, 1] и А — нечеткое множество с элементами из универсального множества Е и множеством принадлежностей М.

Величина sup μA(x) называется высотой нечеткого множества А. Нечеткое множество А нормально, если его высота равна 1, т.е. верхняя граница его функции принадлежности равна 1 (sup μA(x) = 1). При sup μA(x) < 1 нечеткое множество называется субнормалъным.

Нечеткое множество пусто, если для любого x из X μA(x) = 0. Непустое субнормальное множество можно нормализовать по формуле

Нечеткое множество унимодалъно, если μA(x) = 1 только на одном х из Е.

• Носителем нечеткого множества А является обычное подмножество со свойством μA(x) > 0, т.е. носителъ А = { х/х из X, μA(x) > 0}.

• Элементы х из X, для которых μA(x) = 0,5, называются точками перехода множества А.

2.1.3. Понятия нечеткой и лингвистической переменных используются при описании физических объектов и явлений. Нечеткая переменная характеризуется тройкой (а, X, А), где а — наименование переменной; X — универсальное множество (область определения а); А — нечеткое множество на X, описывающее ограничения, т.е. µa ( x) на значения нечеткой переменной а.

Лингвистической переменной (ЛП) называется набор ( ρ, Т, X, С, М), где ρ;— наименование лингвистической переменной; Т — множество ее значений (терм-множество), представляющих собой наименования нечетких переменных, областью определения каждой из которых является множество X; С — синтаксическая процедура, позволяющая оперировать элементами терм-множества Т, в частности, генерировать новые термы (значения); М — семантическая процедура, позволяющая превратить каждое новое значение лингвистической переменной, образуемое процедурой С, в нечеткую переменную, т.е. сформировать соответствующее нечеткое множество.

2.1.3.Наиболее часто используются следующие типы функций принадлежности (memberfunction mf):

Треугольная: trimf=max(min((x-a)/(b-a),(c-x)/(c-b)),0);

Трапецеидальная: trapmf =max(min(min((x-a)/(b-a),1),(d-x)/(d-c)),0);

Гаусса: gaussmf=exp(-(x-c)^2/2/σ^2),

где a, b, c, d, σ; – параметры.

 

2.1.4. Нечеткая переменная уровень может быть представлена в виде ρ=’level’, T={‘high’,’okay’,’low’}, X=[ -1 1].

2.1.5. Нечеткая переменная скорость может быть представлена в виде ρ=’rate’, T = {‘ negative ’,’positive’}, X=[ -0.1 0.1].

2.1.6. Нечеткая переменная клапан может быть представлена в виде ρ=’valve’, T = {‘no_change’,’open_fast’,’close_fast’,’open_slow’,‘close_slow’}, X=[ -0.1 0.1].







Дата добавления: 2015-09-06; просмотров: 452. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия