Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Предварительные сведения





2.1.1. Пусть X — универсальное множество, х — элемент X, а К — некоторое свойство. Обычное (четкое) подмножество А универсального множества X, элементы которого удовлетворяют свойству К, определяется как множество упорядоченных пар

A = { μA(x) / x } ,

где μA(x)характеристическая функция, принимающая значение 1, если х удовлетворяет свойству К, и 0 — в противном случае. Нечеткое подмножество отличается от обычного тем, что для элементов х из X нет однозначного ответа «да-нет» относительно свойства К. В связи с этим нечеткое подмножество А универсального множества X определяется как множество упорядоченных пар

A = { μA(x) / x } ,

где μA(x) — характеристическая функция принадлежности (или просто функция принадлежности), принимающая значения в некотором вполне упорядоченном множестве М (например, М = = [0,1]). Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А. Множество М называют множеством принадлежностей. Если М = {0, 1}, то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

2.1.2. Пусть М = [0, 1] и А — нечеткое множество с элементами из универсального множества Е и множеством принадлежностей М.

Величина sup μA(x) называется высотой нечеткого множества А. Нечеткое множество А нормально, если его высота равна 1, т.е. верхняя граница его функции принадлежности равна 1 (sup μA(x) = 1). При sup μA(x) < 1 нечеткое множество называется субнормалъным.

Нечеткое множество пусто, если для любого x из X μA(x) = 0. Непустое субнормальное множество можно нормализовать по формуле

Нечеткое множество унимодалъно, если μA(x) = 1 только на одном х из Е.

• Носителем нечеткого множества А является обычное подмножество со свойством μA(x) > 0, т.е. носителъ А = { х/х из X, μA(x) > 0}.

• Элементы х из X, для которых μA(x) = 0,5, называются точками перехода множества А.

2.1.3. Понятия нечеткой и лингвистической переменных используются при описании физических объектов и явлений. Нечеткая переменная характеризуется тройкой (а, X, А), где а — наименование переменной; X — универсальное множество (область определения а); А — нечеткое множество на X, описывающее ограничения, т.е. µa ( x) на значения нечеткой переменной а.

Лингвистической переменной (ЛП) называется набор ( ρ, Т, X, С, М), где ρ;— наименование лингвистической переменной; Т — множество ее значений (терм-множество), представляющих собой наименования нечетких переменных, областью определения каждой из которых является множество X; С — синтаксическая процедура, позволяющая оперировать элементами терм-множества Т, в частности, генерировать новые термы (значения); М — семантическая процедура, позволяющая превратить каждое новое значение лингвистической переменной, образуемое процедурой С, в нечеткую переменную, т.е. сформировать соответствующее нечеткое множество.

2.1.3.Наиболее часто используются следующие типы функций принадлежности (memberfunction mf):

Треугольная: trimf=max(min((x-a)/(b-a),(c-x)/(c-b)),0);

Трапецеидальная: trapmf =max(min(min((x-a)/(b-a),1),(d-x)/(d-c)),0);

Гаусса: gaussmf=exp(-(x-c)^2/2/σ^2),

где a, b, c, d, σ; – параметры.

 

2.1.4. Нечеткая переменная уровень может быть представлена в виде ρ=’level’, T={‘high’,’okay’,’low’}, X=[ -1 1].

2.1.5. Нечеткая переменная скорость может быть представлена в виде ρ=’rate’, T = {‘ negative ’,’positive’}, X=[ -0.1 0.1].

2.1.6. Нечеткая переменная клапан может быть представлена в виде ρ=’valve’, T = {‘no_change’,’open_fast’,’close_fast’,’open_slow’,‘close_slow’}, X=[ -0.1 0.1].







Дата добавления: 2015-09-06; просмотров: 452. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия