Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модель персептрона





Структура персептрона представлена на рисунке 2.3.

Рис. 2.3. Структура персептрона

 

Функционирование персептрона можно описать выражением

 

. (2.3)

 

Обратим внимание, что формула (2.3) сводится к более обобщенному вы­ражению (2.1) при .Функция f может быть дискретной ступенчатой функцией - биполярной (т.е. принимающей значения -1 или 1) либо униполярной (принимающей значения 0 или 1). В последующих рассуждениях будем предполагать, что функция ак­тивации биполярная и имеет форму

 
 
для   для


. (2.4)

 

В соответствии с функцией акти­вации персептрон может принимать только два различных выходных зна­чения, поэтому он может классифи­цировать сигналы, подаваемые на его вход в виде векторов х ~ [ х1..., хn ] T одному из двух классов. Напри­мер, одновходовый персептрон может распознавать, является входной сигнал положительным или отрицательным. При наличии двух входов персептрон разделяет плоскость на две полуплоскости. Такая декомпозиция задается пря­мой линией, определяемой уравнением

. (2.5)

 

Уравнение (2.5) можно записать в виде

(2.6)

В общем случае, когда персептрон имеет п входов, он разделяет n - мерное пространство входных векторов х на два полупространства. Эти полупростран­ства отделяются друг от друга (n - 1) - мерной гиперплоскостью, которая называется решающей­ границей (англ. decision boundary) и задается уравнением

. (2.7)

 

На рисунке 2.4 представлена решающая граница для п = 2. Необходимо отме­тить, что прямая, разделяющая полуплоскости, всегда перпендикулярна век­тору весов w = [ w 1, w 2]T.

Как мы уже отмечали во введении, персептрон можно обучать. В процессе обучения модифицируются веса персептрона. Метод обучения персептрона получил название «обучение с учителем» или «обучение под надзором». Роль учителя заключается в подаче на вход персептрона сигналов x (t)= [ x 0(f), x 1 (t),..., хп(t) ] T, t = 1, 2,..., для которых известны истинные значения выходных сигналов d(t), t = 1,2, …, называемых эталонными сигналами.

Рис. 2.4. Решающая граница для n=2

 

Совокупность таких входных выборок соответствующих им значений эталонных сигналов называется обучающей последовательностью. При использовании методов рассматриваемой группы после ввода входных значений рассчитывается вы­ходной сигнал нейрона. После этого веса модифицируются так, чтобы мини­мизировать погрешность между эталонным сигналом и выходным сигналом персептрона. Такой подход объясняет термин «обучение с учителем», поскольку именно учитель задает эталонные значения. Конечно, существуют алгоритмы обучения сетей без учителя, однако эти алгоритмы мы будем рассматривать несколько позднее. Предлагаемый в настоящий момент алгоритм обучения персептрона состоит из следующих шагов:

1. Присвоить начальным весам персептрона случайные значения.

2. На входы нейрона подать обучающий вектор х = x (t)= [ x0 (t), x1 (t),..., xn (t)] T, t = 1,2,….

3. Рассчитать выходное значение персептрона у по формуле (2.3).

4. Сравнить выходное значение у (t) с эталонным значением d=d (x (t)) ,
содержащимся в обучающей последовательности.

5. Модифицировать веса следующим образом:

а) если y (x (t)) ≠ d (x (t), то wi (t +1) = wi (t) +d (x (t)) xi (t);

б) если y (x (t))= d (x (t)), то wi (t +1) = wi (t), т.е. значения весов не изме­няются.

6. Перейти к шагу 2.

Выполнение алгоритма продолжается до тех пор, пока для всех входных векторов, входящих в состав обучающей последовательности, погрешность на выходе не станет меньше априори заданного уровня. На рисунке 2.5 представ­лена блок-схема обучения персептрона. Выполнение одного внутреннего цикла этой схемы соответствует одной так называемой эпохе, которую со­ставляют данные, образующие обучающую последовательность. Выполнение внешнего цикла отражает возможность многократного применения одной и той же обучающей последовательности, пока не будет выполнено условие остановки алгоритма.

Рис. 2.5. Блок-схема алгоритма обучения персептрона

 

. Докажем, что алгоритм обучения персептрона сходится. Теорема о схо­димости персептрона формулируется следующим образом:

Если существует набор весов w*=[ w 1*,..., wn* ] T, корректно классифи­цирующий обучающие векторы х =[ x 1 ,..., хп ] T, т.е. выполняющий отображе­ние у=d (x), то обучающий алгоритм найдет решение за конечное количество итераций при любых начальных значениях вектора весов w.

Предположим, что обучающая выборка представляет линейно сепарабельные классы, поскольку персептрон можно обучить только в этом случае. По­кажем, что существует конечное количество шагов модификации весов, после выполнения которых персептрон будет корректно выполнять отобра­жение у=d( x ). Поскольку функция активации персептрона имеет тип «sgn», длина вектора w * может быть произвольной, например, равной 1,т.е. || w*|| = 1. Поэтому в процессе обучения вектор w достаточно модифицировать так, чтобы показанный на рисунке 2.6. угол α был равен 0. Очевидно, в этом случае cos (α) = 1. Из факта, что | w * ° х | > 0 (символ «о» обозначает скалярное произведение векто­ров) и w * является решением, следует существование такой константы δ > 0, для которой | w *° х| > δ при любых векторах х, входящих в обучающую после­довательность

 

Рис. 2.6. Иллюстрация выполнения алгоритма обучения

персептрона для n=2

 

Из определения скалярного произведения следует, что

. (2.8)

 

Поскольку

(2.9)

то

 

(2.10)

 

В соответствии с алгоритмом обучения персептрона веса для заданно­го входного вектора х модифицируются согласно формуле w ' = w + Δ w, где Δ w = d (х) х. Мы предполагаем, что на выходе появится ошибка и что коррек­ция весов будет необходима. Заметим, что

ww * = w ° w * +d( x ) w * ° х, (2.11)

поэтому

 

w ' ° w * = w ° w * + sgn(w *° x) w *° x. (2.12)

 

Истинны следующие суждения:

 

а) если w *° х < 0, то sgn(w *° x) = -l, поэтому sgn(w *° x) w *° х = -l(w *° x) >0;

 

б) если w * ° х > 0,тo sgn(w * ° x) = 1, поэтому sgn(w * ° х) w * ° х = l(w * ° х) > 0.

 

Следовательно,

sgn(w * ° х) w * ° х = | w *° х|. (2.13)

 

В соответствии с формулами (2.12) и (2.13) можно записать:

 

w ' ° w * = w ° w * + | w *° х|. (2.14)

 

Нам также известно, что |w*° х | > δ, поэтому

 

w ' ° w * > w ° w * + δ. (2.15)

 

Теперь оценим значение || w '||2, не забывая о том, что мы рассматриваем случай, когда при подаче на вход обучающего вектора х на выходе сети появ­ляется ошибка, т.е.

d(x)=-sgn(w ° x). (2.16)

Очевидно, что

 

|| w '||2 =||w + d (x) x ||2 ||w|| + 2 d (x) w ° x +|| x ||2. (2.17)

 

С использованием зависимостей (6.16) и (6.17), а также предполагая ограниченность входных сигналов, получаем

 

|| w '||2 < || w ||2 + || x ||2 = || w ||2 + C. (2.18)

После t шагов модификации весов сети зависимости (6.15) и (6.18) прини­мают вид

 

w (t) ° w * > w ° w * + t δ; (2.19)

 

|| w (t)||2 < || w ||2 + tC. (2.20)

 

С использованием формул (2.10), (2.19) и (2.20) получаем

 

(2.21)

 

Поэтому должны существовать такие значения t = t max, для которых cos(α) = 1. Следовательно, существует конечное количество шагов модификации весов, после которых вектор начальных весов будет корректно выполнять отобра­жение у = d( x ). Если предположить, что начальные значения весов равны 0, то

 

t max =С/δ2. (2.22)







Дата добавления: 2015-09-06; просмотров: 770. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия