МЕХАНИЗМЫ ПРЯМОЛИНЕЙНОГО ДВИЖЕНИЯ
В современных металлорежущих станках для осуществления прямолинейных движений используют преимущественно следующие механизмы: зубчатое колесо-рейку, червяк-рейку, ходовой винт-гайку, кулачковые механизмы, гидравлические устройства, а также электромагнитные устройства типа соленоидов. Механизм зубчатое колесо-рейка применяют в приводе главного движения и движения подачи, а также в приводе различных вспомогательных перемещений. Механизм червяк-гайка применяют в передачах двух типов: с расположением червяка под углом к рейке, что позволяет (в целях большой плавности хода передачи) увеличить диаметр колеса, ведущего червяк, и с параллельным расположением в одной плоскости осей червяка и рейки, когда рейка служит как бы длинной гайкой с неполным углом охвата винта-червяка. Условия работы этой передачи значительно благоприятнее условий работы передачи зубчатое колесо- рейкХодовой винт-гайка является широко применяемым механизмом для осуществления прямолинейного движения. С помощью этого механизма можно производить медленные движения в приводе подач.
Винтовые пары качения. Винтовые пары скольжения из-за больших потерь при скольжении в резьбе и связанного с ним износа заменяют винтовыми парами качения. Они имеют малые потери на трение, высокий КПД, кроме того, в них могут быть полностью устранены зазоры в резьбе в результате создания предварительного натяга. Замена трения скольжения трением качения в винтовой паре возможна либо использованием вместо гайки роликов, свободно вращающихся в своих осях, либо применением тел качения (шариков, а иногда и роликов). На рисунке 75 показана шариковая пара, у которой в резьбу между винтом 1 и гайкой 4 помещены шарики 2. Шарики катятся по канавкам закаленного ходового винта и гайки. При вращении винта шарики, перекатываясь по канавке, попадают в отверстие гайки и, проходя по желобу 3, через второе отверстие снова возвращаются в винтовую канавку. Таким образом шарики постоянно циркулируют в процессе работы передачи. Как правило, в шариковых парах применяют устройства для выработки зазоров и создания предварительного натяга. Кулачковые механизмы,преобразующие вращательное движение в прямолинейное поступательное, применяют главным образом в автоматах. Различают кулачковые механизмы с плоскими и цилиндрическими кулачками.
На рисунке 16, а показана схема механизма с плоскими кулачками. При вращении кулачка 1 через ролик 2, рычажную передачу и зубчатый сектор движение передается с помощью рейки суппорту, который совершает возвратно-поступательное движение в соответствии с профилем кулачка. На рисунке 17 показан принцип работы цилиндрических кулачков. Устройства для малых перемещений. В тех случаях, когда жесткость обычных механизмов типа реечной или винтовой пары не обеспечивает точные перемещения (т.е. когда медленное перемещение узла переходит в скачкообразное с периодически чередующимися остановками и скачками), применяют специальные устройства, работающие без зазоров и обеспечивающие высокую жесткость привода. К таким устройствам относятся термодинамический, магнитострикционный приводы и привод с упругим звеном. Схема термодинамического привода (рисунок 18, а) представляет собой жесткий полый стержень, один конец которого крепят к неподвижной части станка (станине), а другой соединяют с подвижным узлом. При нагревании стержня посредством спирали или при пропускании электрического тока малого напряжения и большой силы непосредственно через него стержень удлиняется на величину Alt, перемещая подвижный узел станка. Для возврата подвижного узла в начальное положение необходимо стержень охладить.
Магнитострикционный привод (рисунок 18, 6) работает следующим образом. Стержень, изготовленный из магнитострикционного материала, помещают в магнитное поле, напряженность которого можно менять. Увеличивая или уменьшая напряженность магнитного поля, тем самым изменяют длину стержня на величину А1М. Различают положительную магнитострикцию (когда с увеличением магнитного поля размеры стержня увеличиваются) и отрицательную (с увеличением напряжения магнитного поля размеры стержня уменьшаются). Это зависит от материала стержня. Привод с упругим звеном (рисунок 18, в) позволяет получать малые перемещения за счет упругого звена типа рессоры или плоской пружины. В нашем случае рессора предварительно нагружается жидкостью из гидросистемы. Затем по мере свободного истечения масса из цилиндра через выпускаемое отверстие малого сечения рессора выпрямляется и свободным концом перемещает шлифовальную бабку. Рассмотренные приводы находят применение в прецизионных станках, где необходимо обеспечить высокую равномерность малых подач и точность малых периодических перемещений.
|