Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Overall assessment of the knowledge 3 страница





203. Regularity of the rhythm on cardiogram is determined by the equality of intercyclic intervals:

1. P - Q

2. Q –T

3. S – T

4. P – P

5. R – R

204. Time intervals between the prongs of the same name of neighbouring cycles are called:

1. intervals;

2. segments;

3. amplitudes;

4. frequencies;

5. period.

205. Time of the excitation propagation in ventricles that is determined by the width of QRS complex is:

1. 0.06 – 0.1 sec;

2. 0.12 – 0.2 sec;

3. 0.7 – 0.9 sec;

4. 0.18 – 0.34 sec;

5. 0.9 – 1.2 sec.

206. Biopotential that is taken from the surface of a body in cardiography is measured in:

1. milliampere;

2. millivolt;

3. nanometer;

4. micrometer;

5. Farad.

207. Are in cardiogram:

1. prongs, segments, intervals;

2. segments, frequencies, prongs;

3. frequencies, intervals, frequencies;

4. membrane potential, interval;

5. intervals, frequencies, amplitudes.

208. The first standard lead corresponds to the placing of electrodes on:

1. right and left hands;

2. right hand and left leg;

3. left leg and left hand;

4. right leg and right hand;

5. right and left legs.

209. The second standard lead corresponds to the placing of electrodes on:

1. right and left hands;

2. right hand and left leg;

3. left leg and left hand;

4. right leg and right hand;

5. right and left legs.

210. The third standard lead corresponds to the placing of electrodes on:

1. right and left hands;

2. right hand and left leg;

3. left leg and left hand;

4. right leg and right hand;

5. right and left legs.

211. Ventricular complex on cardiogram includes prongs:

1. QRS

2. PRS

3. PQT

4. SRQ

5. SQR

212. Which of the intervals does have the longest duration (in sec):

1.PQ

2.QRS

3.RR

4. ST

5.QT

213. Heart biopotentials directly reflects the processes of excitation and conduction of impulses in:

1. myocardium

2. pericardium

3. neurolemma;

4. sarcolemma;

5. dendrite.

214. Registering and analysis of heart biopotentials is used in medicine in:

1. in diagnostical purposes at cardiovascular diseases;

2. in treatment methods at cardiovascular diseases;

3. in diagnostical purposes at neurological diseases;

4. in diagnostical methods for the determination of heart sizes;

5. in diagnostics of impedance of living tissue.

215. Electrocardiography is based on:

1. Einthoven theory that allows to evaluate the heart biopotentials;

2. Faraday theory;

3. Doppler phenomenon;

4. Peltier phenomenon;

5. Einstein theory.

216. ECG prongs are donoted in sequence:

1. P-Q-R-S-T-U;

2. U-P-R-S-T-Q;

3. U-Q-P-R-S-T;

4. P-Q-S-R-T-U;

5. P-Q-R-S-U-T.

217. At the pathological changes in heart is observed:

1. changing of the height and intervals of the ECG;

2. changing of the height of ECG prongs;

3. changing of the ECG intervals;

4. form of ECG doesn’t change;

5. absence of R-prong.

218. Standard bipolar leads for cardiograms registering were suggested by:

1. Goldman;

2. Einstein;

3. Poiseuille;

4. Einthoven;

5. Newton.

219. Sensors that under the influence of entering signal generate current or voltage:

1. active;

2. passive;

3. parametric;

4. strain gauges;

5. resistant.

220. Sensors in which under the influence of entering signal electric parameters are changed:

1. active;

2. passive;

3. parametric;

4. strain gauges;

5. resistant.

221. Parametric sensors:

1. photoelectric, piezoelectric;

2. capacitive, rheostat;

3. piezoelectric, photoelectric;

4. capacitive, photoelectric;

5. piezoelectric, rheostat.

222. Thermocouple is:

1. closed circuit of two different conductors or semiconductors;

2. closed circuit of two same conductors;

3. thermometer of resistance;

4. closed circuit of conductor and semiconductor;

5. closed circuit of two same semiconductors.

223. Input quantity of thermoelectric sensor:

1. pressure;

2. electromotive force;

3. resistance;

4. temperature;

5. potential.

224. Output quantity of thermistor:

1. temperature;

2. pressure;

3. resistance;

4. electric voltage;

5. electric current.

225. Devices that are based on dependence of substance resistance on temperature:

1. oscillograph;

2. thermoresistors;

3. thermistors;

4. electrodes;

5. piezo sensors.

226. Graduation of thermistor:

1. construct the graph of current dependence on temperature;

2. construct the graph of electromotive force dependence on temperature;

3. construct the graph of temperature coefficient dependence on resistance;

4. construct the graph of resistance dependence on temperature;

5. construct the graph of electrical resistivity dependence on temperature.

227. Thermistor is:

1. thin metal wire;

2. crystalline semiconductor;

3. ceramic element;

4. barometer;

5. piezo element.

228. If conduct the electric current through the juncture of semiconducting thermocouple then the juncture heats or cools. It is called:

1. Peltier effect;

2. Compton scattering;

3. photoelectrical effect;

4. piezoelectrical effect;

5. Doppler effect.

229. At graduating of thermistor the dependence of…on temperature is found:

1. current;

2. electromotive force;

3. induction;

4. resistance;

5. potential difference.

230. Transducer of electric quantities to non-electrical once:

1. sensors;

2. electrodes;

3. isolators;

4. semiconductors;

5. electrolytes.

231. Sensitivity of sensor:

1. Z=Dx/Dy

2. Z=y/x

3. Z=x/y

4. Z=Dy/Dx

5. Z=2x/y

232. Sensors the principle of work of which is based on the phenomenon of polarization of crystallic dielectrics at deformation:

1. rheostatic;

2. strain gauge;

3. inductive;

4. piezoelectrical;

5. active.

233. In crystalline dielectrics polarization can emerge at the absence of electric field at deformation:

1. piezoeffect;

2. Peltier effect;

3. thermoelectronic emission;

4. photoeffect;

5. Compton effect.

234. Phenomena that are used in vacuum photoelements:

1. internal photoeffect;

2. external photoeffect;

3. thermoelectronic emission;

4. photogalvanic element;

5. galvanization.

235. Electronic amplifiers are purposed for:

1. transformation of nonelectric input quantity to an electric signal;

2. transformation of alternating current to direct one;

3. increasing the electric signal;

4. increasing the frequency of alternating current;

5. increasing the circular frequency.

236. Graduation of thermocouple:

1. construct the graph of current dependence on temperature;

2. construct the graph of electromotive force dependence on temperature;

3. construct the graph of resistance dependence on temperature;

4. construct the graph of temperature coefficient dependence on resistance;

5. construct the graph of electrical resistivity dependence on temperature.

237. At the increasing of temperature the resistance of semiconductors:

1. decreases exponentially;

2. doesn’t change;

3. increases exponentially;

4. increases linearly;

5. decreases linearly.

238. Sensors in which the active resistance at their mechanical deformation changes:

1. rheostatic;

2. strain gauge;

3. inductive;

4. piezoelectrical;

5. active.

239. Parametric sensors are devices in which…changes:

1. current;

2. voltage;

3. R, L, C;

4. impedance;

5. temperature.

240. At increasing the temperature electrical resistance of metal conductors (U-voltage, I-current):

1. doesn’t change;

2. decreases;

3. increases;

4. is determined by formula R=U/I;

5. takes the maximal value 1 Ω.

241. Ultrasound sensor that allows to obtain the pictures of internal organs in ultrasound dignostics is:

1. thermal sensor;

2. piezosensor;

3. capacitance sensor;

4. optic sensor;

5. strain gauge.

242. Formula means:

1. frequency characteristic of an amplifier;

2. amplitude characteristic;

3. Boltzmann distribution;

4. amplifier coefficient;

5. current resonance.

243. Active (generator) sensors:

1. piezoelectrical, strain gauge type sensors;

2. piezoelectrical, photoelectrical;

3. capacitive, photoelectrical;

4. capacitive, rheostatic;

5. rheostatic, photoelectrical.

244. Conductors with special shape that connect a biological system with measuring circuit:

1. electrodes;

2. sensors;

3. capacitors;

4. amplifiers;

5. resistors.

245. Measuring device for the visual observing of functional dependence of quantities that were transformed to electric signal:

1. optical quantum generator;

2. oscillograph;

3. tomograph;

4. thermovisor;

5. electronic microscope.

246. Oscillograph is measuring device for:

1. visual observing or recording the functional dependence of two quantities;

2. transforming to electrical signal;

3. recording the functional dependence of two quantities; 6 вариантов

4. visual observing of one quantity changing;

5. recording of one quantity changing;

6. changing and observing the functional dependence of many quantities.

247. Influence of factors on thermoelectromotive force of a thermocouple:

1. properties of elements that are in thermoelement and temperature difference of junctures;

2. galvanometer sensitivity;

3. scheme of thermoelements connection;

4. thermal current;

5. scheme of galvanometer switching.

248. Resistance of a conductor depends on:

1. only its size;

2. only its shape;

3. only the material the conductor was made of;

4. only its length;

5. its cross section, length and material the conductor was made of.

249. Contact potential difference:

1. dU=IR

2. U=(kT/e) ln(n1/n2)

3. dU=TdS-PdV

4. U1, 2=(U1-U2)=dU

5. U=I(R+r)

250. Methods of phonocardiography, rheography, sphygmography, electromanometry and ballistocardiography are:

1. electrical registering of nonelectrical quantities;

2. registering of biopotentials of different organs;

3. registering of electrical quantities;

4. registering of impulse tones;

5. registering of noises in heart.

251. Darsonvalization is:

1. influence on the skin and available mucosas with weak high-frequency discharge;

2. warm released at the passing of high-frequency current in tissues of organism;

3. influence on tissues with waves of centimeter diapason;

4. influence with alternating electric field;

5. influence on tissues of organism with high-frequency magnetic field.

252. Diathermy is:

1. influence on the skin and available mucosas with weak high-frequency discharge;

2. warm released at the passing of high-frequency current in tissues of organism;

3. influence on tissues with waves of centimeter diapason;

4. influence with alternating electric field;

5. influence on tissues of organism with high-frequency magnetic field.

253. UHF-therapy is:

1. influence on the skin and available mucosas with weak high-frequency discharge;

2. warm released at the passing of high-frequency current in tissues of organism;

3. influence on tissues with waves of centimeter diapason;

4. influence on tissues of organism with high-frequency alternating elecric field;

5. influence on tissues of organism with high-frequency magnetic field.

254. Frequency of oscillation used for UHF-therapy:

1. 30,2 MHz;

2. 20 kHz;

3. 1000 Hz;

4. 40,58 MHz;

5. 40 kHz;

255. Inductothermy:

1. influence on the skin and available mucosas with weak high-frequency discharge;

2. warm released at the passing of high-frequency current in tissues of organism;

3. influence on tissues with waves of centimeter diapason;

4. influence with alternating electric field;

5. influence on tissues of organism with high-frequency magnetic field.

256. UHF-therapy is the influence on organs and tissues with:

1. alternating electric field with frequency (30 mHz-300 mHz);

2. alternating electromagnetic field with frequency (30 mHz-100 mHz);

3. alternating magnetic field with frequency (30 mHz-100 mHz);

4. alternating current with frequency (30 mHz-100 mHz);

5. alternating magnetic field with frequency (30 mHz-300 mHz).

257. UHF-field in organism causes:

1. heat effect;

2. stimulating effect;

3. anaesthetic effect;

4. shock effect;

5. mild irritant effect.

258. Intensiveness of UHF-field:

1. increases with distancing from the source of the field;

2. doesn’t change with distancing from the source of the field;

3. decreases with distancing from the source of the field;

4. doesn’t depend on the distance from source of the field to measurement place;

5. depends on direction of distancing from field source; it increases with distancing to one side and decreases with distancing to opposite side.

259. At influence of UHF-field to an electrolyte and dielectric that are in the same conditions:

1. temperature of electrolyte increases faster than temperature of dielectric at this frequency;

2. temperature changes the same way in electrolyte and dielectric;

3. temperature doesn’t change in electrolyte and dielectric;

4. temperature of dielectric increases faster than temperature of electrolyte;

5. temperature of dielectric increases and in electrolyte it doesn’t change.

260. At UHF-therapy influences on a patient:

1. alternating electric field with high frequency;

2. alternating magnetic field with high frequency;

3. direct electric current;

4. alternating electric current;

5. alternating magnetic field with low frequency.

261. Formula of Формула количества теплоты, выделяемая в диэлектрике при воздействии УВЧ (где r - удельное сопротивление)

1.Q=E2/r;

2.Q=wE2etgd;

3.Q=wE2ee0tgd;

4.Q=kI2RT;

5.Q= kU2/RT.

262. Heat released in electrolytes that are in electric field of UHF:

1. q = wE2tgd/ee0

2. q=E2/p

3. q=pE2

4. q=wE2ee0tgb

5. q=uE2

263. Formula for heat released in living tissue at the influence of UHF (where r-electrical resistivity):

1. Q = E2r;

2. Q = wE2ee0tgd;

3. Q = E2/r+w E2ee0tgd;

4. Q = kl2RT;

5. Q=kU/Rt.

264. Therapeutic contour in UHF-apparatus are purposed for:

1. amplification of biopotentials;

2. providing the electromagnetic oscillations;

3. generation of electromagnetic oscillations;

4. taking of potential difference between two point on body surface;

5. providing the safety of a patient.

265. Thomson formula:

1. ;

2. ;

3. ;

4. ;

5.

266. Capacitance of the plane condenser:

1.

2.

 

3.

 

4.

 

5.

 

267. Alternating capacitance condenser in therapeutic contour of UHF-apparatus are purposed for changing the:

1. oscillations frequency of anode oscillatory circuit;

2. amplitude frequency in anode oscillatory circuit;

3. natural oscillation frequency of therapeutic contour;

4. impedance of therapeutic contour;

5. intensiveness of anode current in oscillatory circuit.

268. Method of influence of ultra high frequency electric field on human organism:

1. SHF-frequency;

2. microwave therapy;

3. UHF-frequency;

4. general darsonvalization;

5. aeroinotherapy.

269. UHF-apparatus is:

1. enhancer of the signal with registering device;

2. push-pull vacuum tube oscillator with therapeutic contour;

3. rectifier of alternating current with electrodes;

4. therapeutic contour with patient’s electrodes;

5. triode vacuum tube oscillator.

270. Physical factors that effect on the organism tissues at UHF-therapy:

1. alternating magnetic field;

2. alternating electric field with high frequency;

3. direct electric field;

4. ultrasound;

5. X-ray radiation.

271. Method of the medicament introduction to an organism using the direct current without injection:

1. electrocoagulation;

2. electrophoresis;

3. electrostimulation;

4. inductothermy;

5. darsonvalization.

272. Method of influence of high-frequency magnetic field on human organism:

1. UHF-therapy;

2. SHF-therapy;

3. diathermy;

4. electrosurgery;

5. inductothermy.

273. Method of influence of continuous direct magnetic field on human organism:

1. magnitotherapy;

2. inductothermy;

3. diathermy;

4. electrophoresis;

5. galvanization.

274. Therapeutic method in which is used Joule heat released at the passing of high-frequency current along the tissues of an organism:

1. darsonvalization;

2. diathermy;

3. diathermocoagulation;

4. inductothermy;

5. aeroionotherapy.

275. At the influence of electric field of UHF on human organism:

1. ions polarization arises;

2. molecules ionization arises;

3. conduction currents arises;

4. displacement currents arises;

5. conduction and displacement currents arises.

276. Method of using the weak high-frequency electric charge that is formed between the body surface

and special electrode:

1. darsonvalization;

2. diathermy;

3. diathermocoagulation;

4. inductothermy;

5. aeroionotherapy.

277. At the passing of high-frequency current along the tissues of an oraganism Joule heat is released. It destroys tissues:

1. UHF-therapy;

2. SHF-therapy;

3. decometer-wave therapy;

4. electrosurgery;

5. inductothermy.

278. Treatment method at which action of low power direct current on tissues of organism is used:

1. darsonvalization;

2. electrostimulation;

3. faradization;

4. electrocoagulation;

5. galvanization.

279. Influence of short time current with high value on human heart:

1. franklinization;

2. defibrillation;

3. darsonvalization;

4. faradization;

5. galvanization.

280. Under the action of high-frequency electric field pereorientation of dipole molecules occurs in dielectric:

1. conduction current arises;

2. displacement current arises;

3. galvanization arises;

4. ionic diffusion arises;

5. electric dipole arises.

281. Physiological influence of UHF-field:

1. action of electric field on molecules and ions in tissues of organism;

2. transfer of impulse to molecules of tissues of an organism;

3. arising of impulse current in tissues of an organism;

4. transfer of electromagnetic field to tissues of an organism;

5. decreasing the ions concentration in human tissues.

282. Purpose of therapeutic contour in the UHF-apparatus:

1. providing the safety of medical staff;

2. providing the safety of a patient;

3. frequencies of therapeutic contour and apparatus are not coincided;

4. strengthening of action to a patient;

5. decreasing the current.

283. Methods based on primary action of direct current with low power on tissues of organism:

1. electrostimulation;

2. brush discharge;

3. galvanization and electrophoresis;

4. diathermy.

5. electric sleep.

284. Usage of galvanization:

1. for electrostimulation of tissues;

2. for heating of tissues;

3. for medicinal electrophoresis;

4. for studying the heat influence of current on tissues;

5. for studying the conductivity of electric current on tissues.

285. Haemodynamics:

1. motion of liquid in cylindrical tube;

2. circulation of liquid in a basin;

3. motion of blood in vascular system;

4. circulation of air in medium;

5. circulation of air in lungs.

286. Model that describes the time changes of pressure and volume velocity of blood flow was suggested by:

1. Poiseuille;

2. Einthoven;

3. Frank;

4. Huxley;

5. Goldman.

287. Section of biophysics that researches the motion of blood in vascular system:

1. haemodynamics;

2. hydrodynamics;

3. thermodynamics;

4. electrodynamics;

5. kinematics.

288. A fluid viscosity coefficient of which depends only on its nature and temperature:

A. Newtonian;

B. non-Newtonian;

C. ideal;

D. real;

E. viscous.

289. Newtonian fluid:

1. is liquid viscosity of which depends on velocity gradient;

2. is liquid viscosity of which depends on flow rate;

3. doesn’t obey to Newton equation;

4. is liquid viscosity of which does not depend on velocity gradient;

5. doesn’t obey to Einstein equation.

290. Newton equation for viscous fluid ( -viscosity coefficient):

1. F= (dv/dx)S;

2. F=ma;

3. F=kX2/2;

4. F=k(dx/dv)S;

5. F=k/S;

291. A fluid viscosity coefficient of which depends not only on substance nature and temperature but also on conditions of flow:

A. Newtonian;

B. non-Newtonian;

C. ideal;

D. real;

E. viscous.

292. Blood is non-Newtonian fluid:

1. because it flows through the vessels with high velocity;

2. because it contains complex structured formations of cells and proteins;

3. because its flow is laminar;

4. because its flow is turbulent;

5. because it flows through the vessels with low velocity.

293. Viscosity coefficient depends on nature of liquid, temperature and flow regime in:

1. Newtonian fluids;

2. non-Newtonian fluids;

3. suspensions;

4. polymers;

5. low molecular liquids.

294. Non-Newtonian fluids:

1. water, alcohol;

2. oil emulsion, blood;

3. air, alcohol;

4. alcohol, gas;

5. air.

295. Distribution of pressure in vascular system:

1. obeys to Planck law;

2. obeys to Franck law;

3. obeys to Einthoven law;

4. obeys to Bernoulli law;

5. obeys to Goldman law.

296. Law of conservation of energy applied to liquida flow (Bernoulli’s equation):

1. ∆2 m υ =const;

2. m υ 2/2+mgh=const;

3. pV/T=const;

4. ∑ [r m v ]=const;

5. p + gh+ v2/2=const.

297. Flow of liquid in cylindric tubes (vessels) describes Bernoulli’s equation. Equation for horizontal tube:

1. A=RTln n1\n2

2. A=RTln n2\n1

3. P1+ P2+ +Рgh

4. P+ const

 

5. P1+ gh1= P2+ gh2

298. Formula of average flow velocity of viscous liquid (blood) through cylindric vessels:

1. 8 l / r2

2.

3.

4. r4\8 * P2 - P1\l

5. r2* lv * r4

299. Continuity equation of jet:

1. h = Ei - Ek

2. V1 S1= V2 S2

3. VS= Ei - Ek

4. V1 S1= V2 S2 T2 A2

5. h = Ei + Ek

300. Interrelation between volume and linear velocities of blood flow:

1. Q=V / S

2. Q=VS

3. σ = A /S

4. σ = F /S

5. h = 2 σ/ R g

301. Part of vascular bed where the linear velocity of the blood flow is minimal:

1. aorta;

2. arteries;

3. arterioles;

4. capillaries;

5. veins.

302. Part of vascular bed that has great probability of turbulent flow emergence:

1. large;

2. small;

3. emergence of turbulence doesn’t depend on vessel diameter;

4. capillaries;

5. veins.

303. The flow of blood through the vessels is:

1. always laminar;

2. always turbulent;

3. predominantly laminar and only in some cases turbulent;

4. predominantly turbulent and only in some cases laminar;

5. depends on diameter of vessels and viscosity.

304. Reynolds number:

1. 8ηl / r2

2. 8ηl / r4

3. A /S

4. r4\8 ηl







Дата добавления: 2015-09-07; просмотров: 686. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия