Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Overall assessment of the knowledge 2 страница





5. Обеспечивает через биопотенциалов

101. Biopotentials:

1. are potentials emerging in cells, tissues and organs in the process of their life activity;

2. electrical voltage emerging in spatial structural substances;

3. potential difference of two points of any conductor;

4. electric current emerging in living medium;

5. electric current emerging in spatial structural substances.

102. Registering of tissues and organs biopotentials:

1. autoradiography;

2. electrography;

3. X-ray diagnostics;

4. thermography;

5. phonocardiography.

103. Resting potential:

1. potential difference between cytoplasm of unexcited cell and environment;

2. potential of electric field within the unexcited cell and environment;

3. potential emerging on the internal side of unexcited cell membrane;

4. potential emerging on the external side of unexcited cell membrane;

5. potential of magnetic field within the unexcited cell and environment.

104. At excitation potential difference between a cell and environment:

1. action potential arises;

2. potential difference arises;

3. internal forces arise;

4. external forces arise;

5. forces potential arises.

105. Potential difference between cytoplasm and environment:

1. external forces;

2. internal forces;

3. resting potential;

4. action potential;

5. action force.

106. Equation of equilibrium membrane potential:

1. Poiseuille equation;

2. Nernst equation;

3. Newton equation;

4. Hagen equation;

5. Hooke’s law.

107. Nernst equation:

1.

2.

3.

4.

5.

108. Goldman equation:

1.

2.

3.

4.

5.

109. Formula of membrane permeability coefficient:

1.

2.

3. ;

4.

5.

110. Electric voltage arising in cells and tissues of biological objects:

1. electric field;

2. electromagnetic waves;

3. biopotentials;

4. biological membranes;

5. electroconductivity.

111. A process corresponding to the action potential:

1. magnetization;

2. demagnetization;

3. heat release;

4. depolarization and repolarization;

5. polarization.

112. Phases of action potential:

1. magnetization;

2. demagnetization;

3. heat release;

4. ascending and descending;

5. polarization.

113. Permeability of membrane at cell excitation in initial period:

1. increases for K+ ions;

2. decreases for Na+ ions;

3. decreases for K+ ions;

4. increases for Na+ ions;

5. increases for Cl- ions.

114. Action potential propagates along the nervous fiber without attenuation:

1. in air medium;

2. in inactive medium;

3. in active medium;

4. in isotropic medium;

5. in anisotropic medium.

115. Charge of intacellular medium in comparison with extracellular one:

1. in rest is negative, in maximum of action potential is positive;

2. in rest is positive, in maximum of action potential is negative;

3. is always positive;

4. is always negative;

5. always equals to zero.

116. Condition of the arising of action potential:

1. presence of potassium and sodium concentration gradients;

2. presence of chlorine ions concentration gradient;

3. excessive diffusion of magnesium ions;

4. excessive diffusion of calcium ions;

5. excessive diffusion of phosphorus ions.

117. Potentials of ionic type:

1. diffusive, membrane, phase;

2. diffusive, membrane, passive;

3. membrane, phase, active;

4. diffusive, membrane;

5. diffusive, membrane, resting potential.

118. Duration of cardiomyocyte action potential in comparison with the axon action potential:

1. more;

2. less;

3. the same;

4. equals to zero;

5. doesn’t change.

119. Plateau phase in cardiomyocytes is determined by ion fluxes:

1. JNa inside, JK inside;

2. JK inside, JCl inside;

3. JK outside, JCa inside;

4. JNa outside, JH+ inside;

5. JCa inside, JMg inside.

120. Depolarization phase in cardiomyocytes is determined by ion fluxes:

1. JNa inside;

2. JK inside;

3. JK outside;

4. JNa outside;

5. JCa inside.

121. Repolarization phase in cardiomyocytes is determined by ion fluxes:

1. JNa inside;

2. JK inside;

3. JK outside;

4. JNa outside;

5. JCa inside.

122. Ionic channels in biological membranes:

1. independently on ∆φм;

2. conductivity of channels depends on Т;

3. channel transfer K+, Na+ and Сa2+ the same way;

4. there are separate channels for different types of ions;

5. conductivity of channels depends on φ.

123. Resting potential:

1. corresponds to the repolarization process;

2. corresponds to the polarization process;

3. corresponds to the depolarization process;

4. corresponds to the refractoriness process;

5. corresponds to the refractoriness and depolarization processes.

124. At the resting state cytoplasmic membrane is maximally permeable for ions of:

F) К

G) Na

H) Cl

I) Ca

J) Mg

125. Ascending phase of action potential:

1. corresponds to the repolarization process;

2. corresponds to the polarization process;

3. corresponds to the depolarization process;

4. corresponds to the refractoriness process;

5. corresponds to the refractoriness and depolarization processes.

126. Membrane potential φм:

1.

2.

3.

4.

5.

127. At the resting state ratio of membrane permeability coefficients of squid axon for different ions is:

1. PkNa:Pcl=0.04:1:0.45

2. PkNa:Pcl=1:20:0.45

3. PkNa:Pcl=1:0.04:0.45

4. PkNa:Pcl=20:0.04:0.45

5. PkNa:Pcl=0.45:0.04:1

128. At the excitation state ratio of membrane permeability coefficients of squid axon for different ions is:

1. PkNa:Pcl=0.04:1:0.45

2. PkNa:Pcl=1:20:0.45

3. Pk:PNa:Pcl=1:0.04:0.45

4. PkNa:Pcl=20:0.04:0.45

5. PkNa:Pcl=0.45:0.04:1

129. Excitation of the membrane:

1. is described by Goldman equation;

2. is described by Newton equation;

3. is described by Hodgkin-Huxley equation;

4. is described by Nernst equation;

5. is described by Einstein equation.

130. Hodgkin-Huxley equation:

1.

2.

3. ;

4.

5.

131. Absolute value of equilibrium potential of Nernst:

1. doesn’t change with temperature increasing;

2. decreases with temperature increasing;

3. increases with temperature increasing;

4. initially increases then decreases with temperature increasing;

5. initially decreases then increases with temperature increasing;

132. Absolute value of Goldman-Hodgkin-Katz stationary potential:

1. initially increases then decreases with temperature increasing;

2. initially decreases then increases with temperature increasing;

3. doesn’t change with temperature increasing;

4. increases with temperature increasing;

5. decreases with temperature increasing.

133. Biopotentials are subdivided into:

1. equilibrium, nonequilibrium, simple.

2. active, passive, impulse;

3. muscular, neuro-cerebral, diffusive;

4. phasic, nonequilibrium, active;

5. diffusive, membrane, phasic.

134. Action potential arises at:

1. stationary state;

2. transfer of substances;

3. excitation, potential difference between the cell and environment;

4. excitation, temperature difference in membrane and cell;

5. membrane excitation.

135. General changing of potential on the membrane occurring at cell excitation:

1. density of substance flux through the membrane;

2. resting potential;

3. membrane potential;

4. distribution of potential in nervous fiber;

5. action potential.

136. In the moment pf excitation polarity of membrane changes to opposite:

1. polarization;

2. repolarization;

3. depolarization;

4. deformation;

5. reverberation.

137. Electrodes for biopotentials removal:

1. are used in ballistocardiography, mechanocardiography;

2. are used in phonocardiography, ultrasound diagnostics;

3. are used in encephalography, cardiography;

4. are used in ultrasound diagnostics rheography;

5. are used in mechanocardiography.

138. Founder of membrane theory of potentials:

1. Bernstein;

2. Einstein;

3. Röntgen;

4. Huxley;

5. Galvani.

139. First time experimentally measured the potential difference on the membrane of living cell:

1. Hodgkin-Huxley;

2. Einthoven;

3. Goldman;

4. Schrödinger;

5. Nernst-Planck.

140. A process that decreases negative potential within the cell:

1. depolarization;

2. repolarization;

3. polarization;

4. deformation;

5. reverberation.

141. Method of the registering the bioelectrical activity of a muscle:

1. encephalography;

2. electrography;

3. echoencephalography;

4. electromyography;

5. electrocardiography.

142. If in certain point of unmyelinated fiber the potential equaled to φ0 then at x distance from this point it will be:

1.

2.

3.

4.

5.

143. Nervous fibers:

1. myelinated and unmyelinated;

2. plasmatic and non-plasmatic;

3. excitated and unexcited;

4. actin;

5. myosin.

144. Excitation of some part of unmyelinated nervous fiber leads to:

1. local depolarization of the membrane;

2. transport of ions;

3. passive transport;

4. active transport;

5. hyperpolarization.

145. Telegrapher’s equation for nervous fibers:

1.

2.

3.

4.

5.

 

 


146. Constant length of a nervous fiber:

 

1.

2.

3.

4.

5.

147. Solution of the telegrapher’s equation:

1.

2.

3.

4.

5. E=gradU

148. In depolarization phase at axon excitation flows of Na+ ions are directed:

1. JNa inside the cell;

2. JNa out of the cell;

3. JNa=0

4. active;

5. passive.

149. In axon repolarization phase flows of ions are directed:

1. J Na inside the cell;

2. JК inside the cell;

3. JК out of the cell;

4. active;

5. passive.

150. Покое потенциала нервной клетки приближается к равновесному: potential of nervous cell approximates to the equilibrium:

1. calcium potential;

2. sodium potential;

3. chlorine potential;

4. potassium potential;

5. protons potential.

151. During the generation of action potential nervous cell potential approaching to the equilibrium:

1. calcium potential;

2. sodium potential;

3. chlorine potential;

4. potassium potential;

5. protons potential.

152. Propagation of action potential along the myelinated fiber:

1. continuous;

2. saltatory (intermittent);

3. constant;

4. alternating;

5. infinite.

153. Propagation of action potential along the unmyelinated fiber:

1. continuous;

2. saltatory (intermittent);

3. constant;

4. alternating;

5. infinite.

154. Special intercellular connections that are used to the passing of a signal from one cell to another is called:

1. neurotransmitter;

2. synapse;

3. action potential;

4. node of Ranvier;

5. Schwann cell.

155. The structure providing the passing of a signal from ending of axon of a nervous cell to a neuron, muscular fiber, secretory cell is called:

1. neurotransmitter;

2. synapse;

3. action potential;

4. node of Ranvier

5. Schwann cell.

156. Myelin sheath of nerve fiber of haemoglobin molecules:

1. consists of sphingosine molecules;

2. consists of protein-lipid complex;

3. consists of red blood cells molecules;

4. consists of calcium molecules.

157. During the dreaming delta-rhythm arises, - slow high amplitude oscillations of electrical activity of brain. Specify the diapason:

1. 0,5-3,5 Hz; till 300 µV;

2. 8-13 Hz; till 200 µV;

3. 8-13 Hz; till 300 µV;

4. 3,5-7,5 Hz; till 100 µV;

5. 15-100 Hz; till 100 µV.

158. Recording of biological processes (biopotentials, biocurrents) in the structure of brain is implemented by:

1. tomograph;

2. encephalograph;

3. phonocardiograph;

4. rheograph;

5. laser.

159. Myelin sheath that surround areas of nervous cells is kind of:

1. plasmatic membrane;

2. nervous fiber;

3. neurolemma;

4. sarcolemma;

5. karyolemma.

160. Conducts nervous impulses from the body of a cell and dendrites to other neurons:

1. synapse;

2. axon;

3. plasmatic reticulum;

4. soma;

5. neurilemma.

161. Extension of neuron (short) that transmits nervous impulses to the neuron body:

1. synapse;

2. axon;

3. plasmatic reticulum;

4. soma;

5. dendrite.

162. The great importance for EEG genesis has:

1. interrelation of electrical activity of pyramidal neurons;

2. interrelation between cerebral cortex and electrodes;

3. interrelation between electrodes;

4. totality of current electrical details of separate neurons;

5. arithmetic mean of the potential differences.

163. Model of cerebral cortex electrical activity:

1. Franck model;

2. Gibbs energy;

3. Einstein model;

4. Zhadin model;

5. Stoletov model.

164. Electroencephalography is:

1. method of registering of muscle bioelectrical activity;

2. method of registering biopotentials that arise in cardiac muscle at its excitation;

3. method of registering of brain bioelectrical activity;

4. method of measuring the heart sizes in dynamics;

5. method of measuring the blood flow velocity.

165. Main indexes of EEG value are:

1. frequency and amplitude of these oscillations;

2. changing of the potential difference;

3. changing of temperature difference;

4. standard deviation of these oscillations;

5. arithmetic mean of the potential differences.

166. Generation of exciting postsynaptic potential in the area of dendrite trunk without the branching leads to the emergence of:

1. quadrupole;

2. dendrite dipole;

3. action potential;

4. resting potential;

5. somatic dipole.

167. Taken from the surface of body biopotential is measured in:

1. milliampere;

2. millivolt;

3. nanometre;

4. micrometre;

5. centimetre.

168. Types of electrical activity of pyramidal neurons:

1. impulse and gradual potentials;

2. action potential;

3. resting potential;

4. resting potentials and interaction potentials;

5. interaction potentials.

169. Gradual (slow) potentials:

1. moving postsynaptic potentials;

2. inhibitory and excitatory postsynaptic potentials;

3. resting potential;

4. action potential;

5. transforming potentials.

170. Inhibitory postsynaptic potentials of pyramidal cells are generated:

1. in outer side of neurons;

2. между нейронами и головного мозга

3. in the body of neuron;

4. in inner side of neurons;

5. in dendrites.

171. Excitatory postsynaptic potentials of pyramidal cells are generated:

1. in outer side of neurons;

2. между нейронами и головного мозга

3. in the body of neuron;

4. in inner side of neurons;

5. in dendrites.

172. EEG genesis:

1. by gradual electrical activity of pyramidal neurons;

2. by impulse activity of pyramidal neurons;

3. by electrical activity of dipoles;

4. by electrical activity of cells;

5. by electrical activity of soma.

173. Changing of membrane potential of pyramidal neurons is explained:

1. by presence of alternating electric field;

2. by presence of direct electric field;

3. by presence of impulse current;

4. by presence of differing from each other somatic and dendritic dipoles;

5. by the changing of dipole moments.

174. Potential that is formed by somatic dipole:

1. inhibitory postsynaptic potential;

2. excitatory postsynaptic potential;

3. action potential;

4. resting potential;

5. membrane potential.

175. Potential that is formed by dendritic dipole:

1. inhibitory postsynaptic potential;

2. excitatory postsynaptic potential;

3. action potential;

4. resting potential;

5. membrane potential.

176. Direction of vector of dendritic dipole:

1. perpendicular to neurons;

2. parallel to neurons;

3. from soma along dendritic trunk;

4. towards soma along dendritic trunk;

5. from neurons to environment.

177. Direction of vector of somatic dipole:

1. perpendicular to neurons;

2. parallel to neurons;

3. from soma along dendritic trunk;

4. towards soma along dendritic trunk;

5. from neurons to environment.

178. EEG signals:

1. superultrasound;

2. powerful;

3. weak and powerful;

4. constant;

5. alternating and weak.

179. Distribution of neurons in the cortex of brain:

1. irregular and their dipole moments are perpendicular to the surface of cortex;

2. regular and their dipole moments are perpendicular to the surface of cortex;

3. irregular and their dipole moments are parallel to the surface of cortex;

4. regular and their dipole moments are parallel to the surface of cortex;

5. chaotically.

180. Bonds between activities of pyramidal neurons:

1. covalent;

2. strongly negative;

3. weakly negative;

4. positive correlation;

5. negative correlation.

181. Quantities characterizing EEG indexes:

1. amplitude and frequency of oscillations of potential difference;

2. impedance of electrical circuit;

3. direction of propagating oscillations;

4. wave velocity;

5. period of oscillations of potential difference.

182. In rest (at absence of irritators) EEG registers:

1. α-rhythm;

2. β-rhythm;

3. γ-rhythm;

4. δ-rhythm;

5. σ-rhythm.

183. At the active state of the brain EEG registers:

1. α-rhythm;

2. β-rhythm;

3. γ-rhythm;

4. δ-rhythm;

5. σ-rhythm.

184. During the sleeping EEG registers:

1. α-rhythm;

2. β-rhythm;

3. γ-rhythm;

4. δ-rhythm;

5. σ-rhythm.

185. At nerve excitation EEG registers:

1. α-rhythm;

2. β-rhythm;

3. γ-rhythm;

4. δ-rhythm;

5. σ-rhythm.

186. In rest (at absence of irritators) EEG registers α-rhythms with frequencies:

1. (8 - 13) Hz;

2. (0,5 - 3,5) Hz;

3. (14 - 30) Hz;

4. (30 - 55) Hz and higher;

5. higher than 100 Hz.

187. At the active state of the brain EEG registers β-rhythm with frequencies:

1. (8 - 13) Hz;

2. (0,5 - 3,5) Hz;

3. (14 - 30) Hz;

4. (30 - 55) Hz and higher;

5. higher than 100 Hz.

188. During the sleeping EEG registers δ-rhythm with frequencies:

1. (8 - 13) Hz;

2. (0,5 - 3,5) Hz;

3. (14 - 30) Hz;

4. (30 - 55) Hz and higher;

5. higher than 100 Hz.

189. At nerve excitation EEG registers γ-rhythm with frequencies:

1. (8 - 13) Hz;

2. (0,5 - 3,5) Hz;

3. (14 - 30) Hz;

4. (30 - 55) Hz and higher;

5. higher than 100 Hz.

190. Electroencephalography is:

1. registering and analysis of brain biopotentials;

2. registering and analysis of heart biopotentials;

3. registering and analysis of skin biopotentials;

4. registering and analysis of eye retina biopotentials;

5. registering and analysis of nerve trunks and muscles biopotentials.

191. Method of research the mechanical indexes of heart work:

1. ballistocardiography;

2. phonocardiography;

3. echocardiography;

4. electrocardiography;

5. encephalography.

192. Echocardiography is the method of research the structure and movement of heart structures with usage of:

1. alternating current of high frequency;

2. Compton effect;

3. absorbed X-ray radiation;

4. reflected ultrasound;

5. impedance registering.

193. Registering of time dependence of heart biopotentials in electrocardiograph is implemented with:

1. amplifier;

2. source of calibration voltage;

3. electrodes;

4. ultrasound generator;

5. condenser.

194. Electrocardiography is:

1. method of registering of muscle bioelectrical activity at its excitation;

2. method of registering biopotentials that arise in cardiac muscle at its excitation;

3. method of registering of brain bioelectrical activity;

4. method of measuring the heart sizes in dynamics;

5. method of measuring the blood flow velocity.

195. Electrodes applied on a patient at electrography are targeted for taking the:

1. electrical moment of heart;

2. current between two points on body surface;

3. potential difference between two points on body surface;

4. charges formed by heart on body surface;

5. magnetic moment of heart.

196. Problems of the research of electric fields in an organism:

1. determination the electrical resistance of tissues and organs;

2. studying the changing of electrical impulses form;

3. studying the influence of environment to the emergence of electrical potentials;

4. diagnostics of diseases;

5. registering of organs and tissues biopotentials in norm and pathology for the diagnosis of a disease.

197. Electromyography:

1. method of registering the bioelectrical activity of muscles;

2. method of registering the biopotentials arising in cardiac muscle at its excitation;

3. method of registering the bioelectrical activity of brain;

4. method of measuring the heart sizes in dynamics;

5. method of measuring the blood flow velocity.

198. Vector of electric moment of dipole characterizing heart biopotentials:

1. electric vector of polarization;

2. strength of electric field of dipole;

3. strength of magnetic field of dipole;

4. integral electric vector;

5. Umov-Poynting vector.

199. Main characteristic of dipole:

1. impulse moment;

2. electric moment;

3. moment of force;

4. moment of inertia;

5. velocity gradient.

200. On the base of registering the time dependence of heart magnetic field induction method of…is created:

1. electrocardiography;

2. electromyography;

3. electroradiography;

4. ballistocardiography;

5. magnetocardiography.

201. Different disorders of heart functioning that lead to the violation of normal heart rate:

1. extrasystoly;

2. stenocardia;

3. atherosclerosis;

4. thrombophlebitis;

5. arrythmia.

202. Difference of amplitudes of the same ECG prongs in the same moment of time in different leads:

1. the value of integral electrical vector E is different for different leads;

2. rotation of the vector E is different in different leads;

3. projections of the vector E to the different leads are not the same;

4. for each lead there is its own vector E;

5. projections of the vector E to the different leads are the same.







Дата добавления: 2015-09-07; просмотров: 726. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия