Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение 2: Линейной оболочкой L системы A называется множество всех линейных комбинаций векторов системы A. Обозначение L(A).





 

21.

СУММА И ПЕРЕСЕЧЕНИЕ ПОДПРОСТРАНСТВ

Пусть L1..Lk – линейные подпространства пространства V. Суммой подпространств L1..Lk называется множество всевозможных векторов x, представимых в виде x = x1 + … + xk, где xi из Li для любых i от 1 до k. Обозначается как L1 + L2 +.. + Lk

Представление вектора в виде такой суммы называется разложением вектора x по подпространствам L1.. Lk

Пересечением подпространств L1..Lk называется множество, в котором содержаться только те вектора, которые содержатся в каждом из подпространств L1..Lk

Пересечение пустым не бывает, как минимум это нулевой вектор.

Теорема. Сумма и пересечение подпространств линейного пространства V также является подпространством V.

Доказательство следует из определения подпространства.

Теорема. Сумма линейных подпространств есть линейная оболочка совокупности базисов слагаемых подпространств.

Доказательство – просто проверяем двустороннее вложение.

Следствие. Размерность суммы подпространств равна рангу мовокупности базисов слагаемых подпространств.

Теорема. Для любых двух подпространств выполняется равенство dim(L1+L2) = dimL1 + dim L2 – dim(L1^L2)

Доказательство.

Если пересечение ненулевое, то смотрим его базис – f1..fn – так как пересечение является подпространством каждого из исходных подпространств, этот базис можно дополнить до базиса каждого из подпространств. Дополним, получим два базиса. В каждом из них будет n векторов из базиса пересечения. А если дополнить до базиса совокупности сразу, получим n векторов из базиса пересечения и еще m и s дополняющих векторов до базиса первого и второго подпространства. То есть, m+s+n = m+n + s +n – s – верно, доказано.

 

22.

Теоре́ма Кро́некера — Капе́лли — критерий совместности системы линейных алгебраических уравнений:

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы, причём система имеет единственное решение, если ранг равен числу неизвестных, и бесконечное множество решений, если ранг меньше числа неизвестных.

 







Дата добавления: 2015-09-07; просмотров: 395. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия