Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Однородные системы





Однородной системой линейных уравнений называется система вида:

Нулевое решение системы (1) называется тривиальным решением.

Однородные системы всегда совместны, т.к. всегда существует тривиальное решение.

Если существует любое ненулевое решение системы, то оно называется нетривиальным.

Решения однородной системы обладают свойством линейности:

Пусть дана однородная система (1), тогда набор векторов размера называется фундаментальной системой решений (ФСР) (1), если:

§ — решения системы (1);

§ линейно независимы;

§

 

20) Лине́йный опера́тор — обобщение линейной числовой функции (точнее, функции y = kx) на случай более общего множества аргументов и значений. Линейные операторы, в отличие от нелинейных, достаточно хорошо исследованы, что позволяет успешно применять результаты общей теории, так как их свойства не зависят от природы величин.

Примеры линейных однородных операторов:

§ оператор дифференцирования: ;

§ оператор интегрирования: ;

§ оператор умножения на определённую функцию φ(t): y (t) = φ(t) x (t);

§ оператор интегрирования с заданным «весом»

§ оператор взятия значения функции f в конкретной точке x 0: L { f } = f (x 0)[4];

§ оператор умножения вектора на матрицу: b = Ax;

§ оператор поворота вектора.

Примеры линейных неоднородных операторов:

§ Любое аффинное преобразование;

§ ;

§ ;

§ y (t) = φ1(t) x (t) + φ2(t);

где φ(t), φ1(t), φ2(t) — вполне определённые функции, а x (t) — преобразуемая оператором функция.

21) Характеристический многочлен матрицы — это многочлен, определяющий её собственные значения.

Собственным вектором линейного преобразования A называется такой ненулевой вектор , что для некоторого

Собственным значением линейного преобразования A называется такое число , для которого существует собственный вектор, то есть уравнение Ax = λ x имеет ненулевое решение .

Упрощённо говоря, собственный вектор - любой ненулевой вектор x, который отображается оператором в коллинеарный λ x, а соответствующий скаляр λ называется собственным значением оператора.

22) Теоре́ма Га́мильтона — Кэ́ли — известная теорема из теории матриц, названная в честь Уильяма Гамильтона и Артура Кэли.

Непосредственная проверка оправдывает это утверждение для матрицы порядка 2:

Характеристический многочлен

тогда

c (A) = A 2 − (a 11 + a 22) A + (a 11 a 22a 12 a 21) E =

§ Теорема Гамильтона — Кэли обуславливает существование аннулирующего многочлена.

§ Теорема Гамильтона — Кэли эквивалентна утверждению, что характеристический многочлен делится без остатка на минимальный многочлен.

23) ЛИНЕЙНАЯ МОДЕЛЬ ОБМЕНА

В качестве примера математической модели экономического процесса, приводящей к понятию собственного вектора и собственного значения матрицы, рассмотрим линейную модель обмена (модель международной торговли).

Пусть имеется n стран S1, S2,..., Sn, национальный доход каждой из которых равен соответственно x1, x2,..., xn. Обозначимкоэффициентами aij долю национального дохода, которую страна Sj тратит на покупку товаров у страны Si. Будем считать, что весь национальный доход тратится на закупку товаров либо внутри страны, либо на импорт из других стран, т.е.

a1j + a2j +... + anj = 1 (j = 1,2,...,n).

Рассмотрим матрицу

    || a11 a12 ... a1n ||  
    || a21 a22 ... a2n ||  
A = || ... ... ... ... || ,
    || an1 an2 ... ann ||  

которая получила название структурной матрицы торговли. В соответствии с предыдущим равенством сумма элементов любого столбца матрицы А равна 1.

Для любой страны Si (i = 1,2,...,n) выручка от внутренней и внешней торговли составит:

pi = ai1 x1 + ai2 x2 +... + ain xn.

Для сбалансированной торговли необходима бездефицитность торговли каждой страны Si, т.е. выручка от торговли каждой страны должна быть не меньше ее национального дохода:

pi > = xi (i = 1,2,...,n).

24) Скалярным произведением в векторном пространстве над полем называется функция для элементов , принимающая значения в , определенная для каждой пары элементов и удовлетворяющая следующим условиям:

1. для любых трех элементов и пространства и любых чисел справедливо равенство (линейность скалярного произведения по первому аргументу);

2. для любых и справедливо равенство , где черта означает комплексное сопряжение (эрмитова симметричность);

3. для любого имеем , причем только при (положительная определенность скалярного произведения).

Действительное линейное пространство со скалярным произведением называется евклидовым, комплексное — унитарным.


Заметим, что из п.2 определения следует, что действительное. Поэтому п.3 имеет смысл несмотря на комплексные (в общем случае) значения скалярного произведения.







Дата добавления: 2015-09-07; просмотров: 472. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия