Потік вектора напруженості та індукції електричного поля. Теорема Остроградського-Гауса
Нехай в просторі існує електричне поле, створене деякими електричними зарядами. Розглянемо деяку поверхню з нескінченно малою площею dS (елементарну поверхню) з одиничним вектором нормалі до поверхні , як зображено на рис.3.3. Нехай в центрі елементарної поверхні напруженість електричного поля рівна . Елементарним потоком вектора напруженості електричного поля називається скалярна величина, рівна скалярному добуткові вектора напруженості електричного поля і одиничного вектора нормалі на площу елементарної поверхні: , (3.10) де – кут між векторами і . Подібним чином можна дати визначення елементарного потоку вектора індукції електричного поля, який рівний: . (3.11) Потік вектора напруженості електричного поля через деяку поверхню S визначається за формулою: . (3.12) Він пропорційний числу силових ліній, які пронизують цю поверхню. Потік вектора індукції електричного поля через деяку поверхню S рівний: . (3.13) Розглянемо деякий точковий позитивний заряд , який помістимо в центрі сферичної поверхні S радіусом R (рис. 3.4). Обчислимо потік вектора напруженості електричного поля через цю замкнену поверхню . (3.14) Напруженість електричного поля точкового заряду в будь якій точці сферичної поверхні рівна . (3.15) Підставимо (3.15) в (3.14), врахуємо, що кут між векторами і в даному випадку . . Оскільки для всіх точок сферичної поверхні величина R є постійною то, винісши постійні множники за знак інтегралу, отримаємо: . (3.16) Але інтеграл по замкнутій поверхні S - це площа сферичної поверхні, яка рівна: . (3.17) Підставимо вираз (3.17) в (3.16): . (3.18) Український вчений М.В.Остроградський і німецький вчений К.Гаус довели, що формула (3.18) справедлива для замкненої поверхні довільної форми і довільної кількості електричних зарядів, які знаходяться всередині цієї поверхні. Тому в загальному випадку формулу (3.18) можна представити у вигляді: . (3.19) Формула (3.19) – це теорема Остроградського-Гауса для напруженості електричного поля:потік вектора напруженості електричного поля через довільну замкнену поверхню рівний алгебраїчній сумі електричних зарядів, охоплених цією поверхнею, поділеній на діелектричну проникність середовища. Помножимо рівняння (3.19) на . Враховуючи, що цей множник постійний, внесемо його під знак інтегралу: . (3.20) Враховуючи (3.7), отримаємо . (3.21) Формула (3.21) це теорема Остроградського-Гауса для індукції електричного поля: потік вектора індукції електричного поля через довільну замкнену поверхню рівний алгебраїчній сумі електричних зарядів, охоплених цією поверхнею. Розглянемо випадок коли електричні заряди розподілені в просторі неперервно з деякою об’ємною густиною . Об’ємною густиною електричного зарядуназивається фізична величина, рівна електричному зарядові в одиниці об’єму простору: . (3.22) Визначимо з цієї формули dq: . (3.23) Проінтегрувавши вираз (3.23) по деякому об’єму V визначимо сумарний електричний заряд який міститься в цьому об’ємі: . (3.24) З врахуванням формули (3.24) теорему Остроградського-Гауса (3.19) і (3.21) у випадку неперервного просторового розподілу зарядів можна представити у вигляді: . (3.25) . (3.26) У формулах (3.25) і (3.26) інтегрування здійснюється по всьому об’єму V який обмежений замкненою поверхнею S.
|