Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИЗНАКИ МОНОТОННОСТИ ФУНКЦИИ





 

Применим понятие производной для исследования возрастания и убывания функции.

Теорема. (Необходимое и достаточное условия возрастания функции). 1) Если дифференцируемая функция y = f (x) возрастает на [ a, b ], то ее производная неотрицательна на этом отрезке: f ' (x) ≥ 0.

2) Если функция y = f (x) непрерывна на [ a, b ], дифференцируема на интервале (a, b) и ее производная положительна на этом отрезке (f ' (x)≥ 0 для a < x <b), то y = f (x) возрастает на [ a, b ].

►Докажем первую часть теоремы.

Итак, пусть функция y = f (x) возрастает на [ a, b ]. Зафиксируем на этом отрезке произвольную точку x, придадим ей приращение Δ x. Тогда если Δ x > 0, то x < x+ Δ x. Поэтому по определению возрастающей функции f (x) < f (x+ Δ x), то есть f (x+ Δ x) – f (x) > 0. Но тогда и .

Аналогично, если Δ x < 0, то x > x+ Δ x и значит f (x+ Δ x) – f (x) < 0, а .

Переходя в этом равенстве к пределу при Δ x → 0, получим , то есть f ' (x)≥0.

Докажем вторую часть теоремы. Пусть f ' (x) > 0 при всех x (a,b). Рассмотрим два любых значения x 1 и x 2 таких, что x 1 < x 2. Нужно доказать, что f (x 1) < f (x 2). По теореме Лагранжа существует такое число c (x 1, x 2), что . По условию f' (x) > 0, x 1x 2 > 0 , а это и значит, что f (x) – возрастающая функция. ◄

Аналогично можно сделать вывод о том, что если функция y = f (x) убывает на отрезке [ a, b ], то f ¢(x) £ 0 на этом отрезке. Если f ¢(x) < 0 в промежутке (a, b), то f (x) убывает на отрезке [ a, b ].

Конечно, данное утверждение справедливо, если функция y = f (x) непрерывна на отрезке [ a, b ] и дифференцируема на интервале (a, b).

Доказанная теорема выражает очевидный геометрический факт. Если на [ a, b ] функция возрастает, то касательная к кривой y = f (x) в каждой точке этого отрезке образует острый угол с осью Ox или горизонтальна, т.е. tg α; ≥ 0, а значит f ' (x) ≥ 0.

Аналогично иллюстрируется и вторая часть теоремы.

 
 

 

 


Таким образом, возрастание и убывание функции характеризуется знаком ее производной. Чтобы найти на каком промежутке функция возрастает или убывает, нужно определить, где производная этой функции только положительна или только отрицательна, то есть решить неравенства f ' (x) > 0 – для возрастания или f ' (x) < 0 – для убывания.

Пример. Рассмотрим зависимость между эластичностью спроса и доходом от продажи товара.

Совокупный доход R, получаемый фирмой, равен цене товара P, умноженной на количество реализованного товара Q: . Если цена товара есть функция от количества, то . Производная показывает возрастание или убывание дохода при увеличении количества продаваемого товара. Рассмотрим частный случай функции , а именно . Тогда

.

Функция эластичности спроса в этом случае имеет вид: .

Поэтому спрос эластичен (), когда , и неэластичен (), когда .

Имеем . На интервале (0; 3) , т.е. при эластичном спросе доход растет при снижении цен и продаже дополнительного товара, а на интервале (3; 6) , т.е при неэластичном спросе при увеличении продажи товара доход уменьшается.

Эластичность функции показывает приближенно, на сколько процентов изменится функция при изменении независимой переменной на 1%.

 

 







Дата добавления: 2015-09-07; просмотров: 568. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия