ПРИЗНАКИ МОНОТОННОСТИ ФУНКЦИИ
Применим понятие производной для исследования возрастания и убывания функции. Теорема. (Необходимое и достаточное условия возрастания функции). 1) Если дифференцируемая функция y = f (x) возрастает на [ a, b ], то ее производная неотрицательна на этом отрезке: f ' (x) ≥ 0. 2) Если функция y = f (x) непрерывна на [ a, b ], дифференцируема на интервале (a, b) и ее производная положительна на этом отрезке (f ' (x)≥ 0 для a < x <b), то y = f (x) возрастает на [ a, b ]. ►Докажем первую часть теоремы. Итак, пусть функция y = f (x) возрастает на [ a, b ]. Зафиксируем на этом отрезке произвольную точку x, придадим ей приращение Δ x. Тогда если Δ x > 0, то x < x+ Δ x. Поэтому по определению возрастающей функции f (x) < f (x+ Δ x), то есть f (x+ Δ x) – f (x) > 0. Но тогда и . Аналогично, если Δ x < 0, то x > x+ Δ x и значит f (x+ Δ x) – f (x) < 0, а . Переходя в этом равенстве к пределу при Δ x → 0, получим , то есть f ' (x)≥0. Докажем вторую часть теоремы. Пусть f ' (x) > 0 при всех x (a,b). Рассмотрим два любых значения x 1 и x 2 таких, что x 1 < x 2. Нужно доказать, что f (x 1) < f (x 2). По теореме Лагранжа существует такое число c (x 1, x 2), что . По условию f' (x) > 0, x 1 – x 2 > 0 , а это и значит, что f (x) – возрастающая функция. ◄ Аналогично можно сделать вывод о том, что если функция y = f (x) убывает на отрезке [ a, b ], то f ¢(x) £ 0 на этом отрезке. Если f ¢(x) < 0 в промежутке (a, b), то f (x) убывает на отрезке [ a, b ]. Конечно, данное утверждение справедливо, если функция y = f (x) непрерывна на отрезке [ a, b ] и дифференцируема на интервале (a, b). Доказанная теорема выражает очевидный геометрический факт. Если на [ a, b ] функция возрастает, то касательная к кривой y = f (x) в каждой точке этого отрезке образует острый угол с осью Ox или горизонтальна, т.е. tg α; ≥ 0, а значит f ' (x) ≥ 0. Аналогично иллюстрируется и вторая часть теоремы.
Таким образом, возрастание и убывание функции характеризуется знаком ее производной. Чтобы найти на каком промежутке функция возрастает или убывает, нужно определить, где производная этой функции только положительна или только отрицательна, то есть решить неравенства f ' (x) > 0 – для возрастания или f ' (x) < 0 – для убывания. Пример. Рассмотрим зависимость между эластичностью спроса и доходом от продажи товара. Совокупный доход R, получаемый фирмой, равен цене товара P, умноженной на количество реализованного товара Q: . Если цена товара есть функция от количества, то . Производная показывает возрастание или убывание дохода при увеличении количества продаваемого товара. Рассмотрим частный случай функции , а именно . Тогда . Функция эластичности спроса в этом случае имеет вид: . Поэтому спрос эластичен (), когда , и неэластичен (), когда . Имеем . На интервале (0; 3) , т.е. при эластичном спросе доход растет при снижении цен и продаже дополнительного товара, а на интервале (3; 6) , т.е при неэластичном спросе при увеличении продажи товара доход уменьшается. Эластичность функции показывает приближенно, на сколько процентов изменится функция при изменении независимой переменной на 1%.
|