Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Применение дифференциала к приближенным вычислениям





 

Пусть нам известно значение функции y 0 = f (x 0) и ее производной y 0' = f '(x0) в точке x0. Покажем, как найти значение функции в некоторой близкой точке x.

Как мы уже выяснили приращение функции Δ y можно представить в виде суммы Δ y = dy + α;·Δ x, т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δ x вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δ ydy или Δ yf '(x0)·Δ x.

Т.к., по определению, Δ y = f (x) – f (x0), то f (x) – f (x0) ≈ f '(x0)·Δ x. Откуда

f (x) ≈ f (x0) + f '(x0)·Δ x

При выполнении приближенных вычислений определяют абсолютную (разность между точным и приближенным значениями) и относительную погрешности: .

Пример. y = x2 – 2 x. Найти приближенно, с помощью дифференциала, изменение y (т.е. Δ y), когда x изменяется от 3 до 3,01.

Имеем Δ ydy = f '(x)·Δ x f '(x)=2 x – 2, f '(3)=4, Δ x =0,01. Поэтому Δ y ≈ 4·0,01 = 0,04.

 







Дата добавления: 2015-09-07; просмотров: 518. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия