Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие дифференциала функции





ДИФФЕРЕНЦИАЛ ФУНКЦИИ

 

Пусть функция y = f (x) дифференцируема на отрезке [ a; b ]. Производная функции в некоторой точке х 0 Î [ a; b ] определяется равенством . Тогда по свойству предела можно записать: , где a ® 0, при D х ® 0 т.е. является бесконечно малой, остается постоянной величиной при D х ® 0. Следовательно:

.

Итак, приращение дифференцируемой функции y = f (x) может быть представлено в виде суммы двух слагаемых, из которых первое (при f' (х) ≠ 0) линейно относительно D х и при D х ® 0 является бесконечно малой того же порядка малости, что D х. Поэтому говорят, что первое слагаемое является главной частью приращения, линейной относительно Δ x. Второе слагаемое – бесконечно малая величина более высокого порядка, чем Δ x.

Дифференциалом функции f (x) в точке х называется главная линейная часть приращения функции.

Обозначается d y или df (x). Из определения следует, что dy = f ¢(x)D x.

Таким образом, если функция y = f (x) имеет производную f' (x) в точке x, то произведение производной f ' (x) на приращение Δ x аргумента называют дифференциалом функции.

Найдем дифференциал функции y = x. В этом случае y ' = (x)' = 1 и, следовательно, dy = dx = Δ x. Значит, дифференциал dx независимой переменной x совпадает с ее приращением Δ x. Поэтому можем записать: dy = f ¢(x) dx. Можно также записать: .

Следовательно, производную f '(x) можно рассматривать как отношение дифференциала функции к дифференциалу независимой переменной.

Замечание. Из дифференцируемости функции в точке следует существование дифференциала в этой точке. Справедливо и обратное утверждение: для функции y = f (x) существует дифференциал dy=A·dx в некоторой точке x, то эта функция имеет производную в точке x и f '(x)= А.

Таким образом, между дифференцируемостью функции и существованием дифференциала имеется очень тесная связь, оба понятия равносильны.

 







Дата добавления: 2015-09-07; просмотров: 432. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия