Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие дифференциала функции





ДИФФЕРЕНЦИАЛ ФУНКЦИИ

 

Пусть функция y = f (x) дифференцируема на отрезке [ a; b ]. Производная функции в некоторой точке х 0 Î [ a; b ] определяется равенством . Тогда по свойству предела можно записать: , где a ® 0, при D х ® 0 т.е. является бесконечно малой, остается постоянной величиной при D х ® 0. Следовательно:

.

Итак, приращение дифференцируемой функции y = f (x) может быть представлено в виде суммы двух слагаемых, из которых первое (при f' (х) ≠ 0) линейно относительно D х и при D х ® 0 является бесконечно малой того же порядка малости, что D х. Поэтому говорят, что первое слагаемое является главной частью приращения, линейной относительно Δ x. Второе слагаемое – бесконечно малая величина более высокого порядка, чем Δ x.

Дифференциалом функции f (x) в точке х называется главная линейная часть приращения функции.

Обозначается d y или df (x). Из определения следует, что dy = f ¢(x)D x.

Таким образом, если функция y = f (x) имеет производную f' (x) в точке x, то произведение производной f ' (x) на приращение Δ x аргумента называют дифференциалом функции.

Найдем дифференциал функции y = x. В этом случае y ' = (x)' = 1 и, следовательно, dy = dx = Δ x. Значит, дифференциал dx независимой переменной x совпадает с ее приращением Δ x. Поэтому можем записать: dy = f ¢(x) dx. Можно также записать: .

Следовательно, производную f '(x) можно рассматривать как отношение дифференциала функции к дифференциалу независимой переменной.

Замечание. Из дифференцируемости функции в точке следует существование дифференциала в этой точке. Справедливо и обратное утверждение: для функции y = f (x) существует дифференциал dy=A·dx в некоторой точке x, то эта функция имеет производную в точке x и f '(x)= А.

Таким образом, между дифференцируемостью функции и существованием дифференциала имеется очень тесная связь, оба понятия равносильны.

 







Дата добавления: 2015-09-07; просмотров: 432. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия