Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Разложение по формуле Маклорена некоторых элементарных функций





 

Следует отметить, что при разложении функции в ряд применение формулы Маклорена предпочтительнее, чем применение непосредственно формулы Тейлора, т.к. вычисление значений производных в нуле проще, чем в какой-либо другой точке, естественно, при условии, что эти производные существуют.

Применение формулы Тейлора для разложения функций в степенной ряд широко используется и имеет огромное значение при проведении различных математических расчетов. Непосредственное вычисление интегралов некоторых функций может быть сопряжено со значительными трудностями, а замена функции степенным рядом позволяет значительно упростить задачу. Нахождение значений тригонометрических, обратных тригонометрических, логарифмических функций также может быть сведено к нахождению значений соответствующих многочленов.

Если при разложении в ряд взять достаточное количество слагаемых, то значение функции может быть найдено с любой заданной точностью. Практически можно сказать, что для нахождения значения любой функции с разумной степенью точности (предполагается, что точность, превышающая 10-20 знаков после десятичной точки, необходима очень редко) достаточно 4-10 членов разложения в ряд.

Применение принципа разложения в ряд позволяет производить вычисления на ЭВМ в режиме реального времени, что немаловажно при решении конкретных технических задач.

Функция f (x) = e x. Находим: f (x) = e x, f (0) = 1, f ¢(x) = e x, f ¢(0) = 1,…, f ( n )(x) = e x, f ( n )(0) = 1.

Тогда:

Пример: Найдем значение числа е. В полученной выше формуле положим х = 1.

Для 8 членов разложения: e = 2,71827876984127003.

Для 10 членов разложения: e = 2,71828180114638451

Для 100 членов разложения: e = 2,71828182845904553

Как видно, для достижения точности, достаточной для решения большинства практических задач, можно ограничиться 6-7 – ю членами ряда.

Функция f (x) = sin x. Получаем f (x) = sin x; f (0) = 0, f ¢(x) = cos x = sin(x + p/2); f ¢(0) = 1;

f ¢¢(x) = –sin x = sin(x + 2p/2); f ¢¢(0) = 0; f ¢¢¢(x) = –cos x = sin(x + 3p/2); f ¢¢¢(0)=–1;

………………………………………… f ( n )(x) = sin(x + p n /2); f ( n )(0) = sin(p n /2);

f ( n +1)(x) = sin(x + (n + 1)p/2); f ( n +1)() = sin( + (n + 1)p/2);

 

Функция f (x) = cos x. Для функции cos x, применив аналогичные преобразования, получим:

 

Функция f (x) = (1 + x)a (a - действительное число).

……….

Тогда:

Если в полученной формуле принять a = n, где n – натуральное число и f ( n +1)(x)=0, то Rn +1 = 0, тогда

Получилась формула, известная как бином Ньютона.

Функция f (x) = ln(1 + x). Получаем: f (x) = ln(1 + x); f (0) = 0; ;(x) = ;

Таким образом:

,

 

Полученная формула позволяет находить значения любых логарифмов (не только натуральных) с любой степенью точности.

Разложение различных функций по формулам Тейлора и Маклорена приводится в специальных таблицах, однако, формула Тейлора настолько удобна, что для подавляющего большинства функций разложение может быть легко найдено непосредственно.

В дальнейшем будут рассмотрены различные применения формулы Тейлора не только к приближенным представлениям функций, но и к решению дифференциальных уравнений и к вычислению интегралов.







Дата добавления: 2015-09-07; просмотров: 526. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия