ОСНОВНЫЕ ТЕОРЕМЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ
Теорема Ролля. Если функция f (x) непрерывна на отрезке [ a, b ], дифференцируема на интервале (а, b) и значения функции на концах отрезка равны f (a) = f (b), то на интервале (а, b) существует точка с, a < с < b, в которой производная функции f (x) равная нулю: f¢(с) = 0.
Замечание. Если внутри [ a; b ] найдется хотя бы одна точка, в которой производная функции f (x) не существует, то утверждение теоремы может оказаться неверным. Теорема Ролля имеет несколько следствий: 1˚. Если функция f (x) на отрезке [ a, b ] удовлетворяет теореме Ролля, причем f (a) = f (b) = 0, то существует по крайней мере одна точка с, a < с < b, такая, что f ¢(с) = 0. Т.е. между двумя нулями функции найдется хотя бы одна точка, в которой производная функции равна нулю. 2˚. Если на рассматриваемом интервале (а, b) функция f (x) имеет производную (n – 1)-го порядка и n раз обращается в нуль, то существует, по крайней мере, одна точка интервала, в котором производная (n – 1)-го порядка равна нулю. Теорема Лагранжа (Жозеф Луи Лагранж (1736–1813) французский математик). Если функция f (x) непрерывна на отрезке [ a, b ] и дифференцируема во всех внутренних точках этого отрезка, то на интервале (а, b) найдется, по крайней мере, одна точка с (a < с < b), такая, что Это означает, что если на некотором промежутке выполняются условия теоремы, то отношение приращения функции к приращению аргумента на этом отрезке равно значению производной в некоторой промежуточной точке. Рассмотренная выше теорема Ролля является частным случаем теоремы Лагранжа.
Замечания. 1. Все условия теоремы существенны. 2. Выражение Теорема Коши (Коши (1789-1857) французский математик). Если f (x) и g (x) – две функции, непрерывные на [ a; b ] и дифференцируемые внутри него, причем g' (x) ≠ 0 при всех x Î (a; b), то внутри отрезка [ a; b ] найдется, хотя бы одна, точка c Î (a; b), что
Эта формула называется обобщенной формулой конечных приращений. Т.е. отношение приращений функций на данном отрезке равно отношению производных в точке с. Для доказательства этой теоремы на первый взгляд очень удобно воспользоваться теоремой Лагранжа. Записать формулу конечных разностей для каждой функции, а затем разделить их друг на друга. Однако, это представление ошибочно, т.к. точка с для каждой из функции в общем случае различна. Конечно, в некоторых частных случаях эта точка интервала может оказаться одинаковой для обеих функций, но это – очень редкое совпадение, а не правило, поэтому не может быть использовано для доказательства теоремы. Замечание. Рассмотренная выше теорема Лагранжа является частным случаем (при g (x) = x) теоремы Коши. Все эти теоремы применяются для доказательства самых разных теорем. Теорема Коши широко используется для раскрытия так называемых неопределенностей. Применение полученных результатов позволяет существенно упростить процесс вычисления пределов функций, что будет подробно рассмотрено ниже.
|