Матричный метод решения систем линейных уравнений
Матричный метод применим к решению систем уравнений, где число уравнений равно числу неизвестных. Метод удобен для решения систем невысокого порядка. Метод основан на применении свойств умножения матриц. Пусть дана система уравнений:
Составим матрицы: A =
Систему уравнений можно записать: A×X = B. Сделаем следующее преобразование: A-1×A×X = A-1×B, т.к. А-1×А = Е, то Е×Х = А-1×В Х = А-1×В Для применения данного метода необходимо находить обратную матрицу, что может быть связано с вычислительными трудностями при решении систем высокого порядка. Пример. Решить систему уравнений:
Х =
Найдем обратную матрицу А-1.
D = det A =
M11 = M12 = M13 =
Находим матрицу Х.
Х =
Итого решения системы: x =1; y = 2; z = 3.
|