Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Крамера





 

Данный метод также применим только в случае систем линейных уравнений, где число переменных совпадает с числом уравнений. Кроме того, необходимо ввести ограничения на коэффициенты системы. Необходимо, чтобы все уравнения были линейно независимы, т.е. ни одно уравнение не являлось бы линейной комбинацией остальных.

Для этого необходимо, чтобы определитель матрицы системы не равнялся 0. det A ¹ 0;

в случае, если определитель матрицы системы не равен нулю, имеет единственное решение и это решение находится по формулам:

 

xi = Di/D, где

 

D = det A, а Di – определитель матрицы, получаемой из матрицы системы заменой столбца i столбцом свободных членов bi.

 

Di =

 

Метод Гауса

 

Рассмотрим систему линейных уравнений:

 

 

Разделим обе части 1–го уравнения на a11 ¹ 0, затем:

1) умножим на а21 и вычтем из второго уравнения

2) умножим на а31 и вычтем из третьего уравнения

и т.д.

 

Получим:

 

,

где d1j = a1j/a11, j = 2, 3, …, n+1.

 

dij = aij – ai1d1j i = 2, 3, …, n; j = 2, 3, …, n+1.

Далее повторяем эти же действия для второго уравнения системы, потом – для третьего и т.д.

Пример. Решить систему линейных уравнений методом Гаусса.

 

 

Составим расширенную матрицу системы.

 

Составим расширенную матрицу системы.

А* =

 

Таким образом, исходная система может быть представлена в виде:

 

, откуда получаем: x3 = 2; x2 = 5; x1 = 1.


 

A = ; D1= ; D2= ; D3= ;

 

x1 = D1/detA; x2 = D2/detA; x3 = D3/detA;

 

Пример. Найти решение системы уравнений:

 

 

D = = 5(4 – 9) + (2 – 12) – (3 – 8) = -25 – 10 + 5 = -30;

D1 = = (28 – 48) – (42 – 32) = -20 – 10 = -30.

 

x1 = D1/D = 1;

D2 = = 5(28 – 48) – (16 – 56) = -100 + 40 = -60.

 

x2 = D2/D = 2;


D3 = = 5(32 – 42) + (16 – 56) = -50 – 40 = -90.

x3 = D3/D = 3.

 







Дата добавления: 2015-09-07; просмотров: 495. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия