Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейные операторы.





 

Определение 1. Функция (отображение) А, определенная на линейном пространстве Ln, область значений которой принадлежит линейному пространству Lm (здесь n и m – размерности соответствующих пространств) называется оператором:

Если

 

Все прообразы нулевого элемента Lm называют ядром оператора А:

 

Определение 2. Оператор А называется линейным, если для выполняется равенство:

Примеры. 1) (Ø). 2)

3) 4)

 

5)

 

Пусть А – линейный оператор: базисы в соответствующих пространствах Ln и Lm.

 

Определение 3. Матрицей линейного оператора А называется матрица (будем обозначать ее через Аmn), столбцами которой являются координаты образов базисных элементов {e} в базисе {f }, т.е., если

, то или в матричной форме:

 

 

 

Замечание. Оператор, в частности линейный, определяет некоторое действие на элементы линейного пространства и не зависит от базиса. В свою очередь, матрица линейного оператора зависит как от базиса пространства прообразов, так и от базиса пространства образов.

 

Преобразование j линейного пространства Vп называется линейным преобразованием этого пространства, если сумму любых двух векторов а, b оно переводит в сумму образов этих векторов,

 

(a+b) j =aj + bj (1)

 

а произведение любого вектора а на любое число а переводит в произведение образа вектора а на это же число а,

 

(aa) j=a(aj) (2)

 

Из этого определения немедленно вытекает, что линейное преобразование линейного пространства переводит любую линейную комбинацию данных векторов а1, а2,…, аn, в линейную комбинацию (с теми же коэффициентами) образов этих векторов

 

(a1а1+ a2 а1+… an а1)j = a1(а1j) +a2(а2j) + …+an(аnj) (3)

28. Собственные векторы линейного преобразования, векторы, которые при этом преобразовании не меняют своего направления, а только умножаются на скаляр. Например, Собственные векторы преобразования, составленного из вращении вокруг некоторой оси и сжатия к перпендикулярной ей плоскости, служат векторы, направленные по этой оси. Координаты х1, х2,..., xn Собственные векторы линейного преобразования n-мерного пространства с матрицей преобразования ||aik|| удовлетворяют системе однородных линейных уравнений , где l — одно из собственных значений этой матрицы. Если матрица преобразования самосопряжённая (см. Самосопряжённая матрица), то Собственные векторы взаимно перпендикулярны. При самосопряжённом преобразовании сфера переходит в эллипсоид, главными осями которого являются Собственные векторы преобразования.

 

Собственные векторы и собственные значения линейного оператора

 

Ненулевой вектор называется собственным вектором линейного оператора , если ( для комплексного ), такое, что Число называется собственным числом (собственным значением) оператора f, соответствующим этому собственному вектору.

 

Если в некотором базисе оператор f имеет матрицу А и в том же базисе вектор имеет координатный столбец X, то или

 

Собственные числа линейного оператора - корни характеристического уравнения , где - матрица оператора f, - символ Кронекера.

 

Для каждого собственного значения соответствующие собственные векторы могут быть найдены из матричного уравнения или соответствующей ему системы линейных уравнений

 

Линейный оператор называется оператором простой структуры, если существует базис, состоящий из собственных векторов этого оператора. Матрица линейного оператора в этом базисе имеет вид

 

где - соответствующие собственные значения.

29.

Квадратичная форма — функция на векторном пространстве, задаваемая однородным многочленом второй степени от координат вектора. Пусть есть векторное пространство над полем и — базис в .

 

Функция называется квадратичной формой, если её можно представить в виде

где , а — некоторые элементы поля К.

Свойства







Дата добавления: 2015-09-07; просмотров: 412. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия