Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейные операторы.





 

Определение 1. Функция (отображение) А, определенная на линейном пространстве Ln, область значений которой принадлежит линейному пространству Lm (здесь n и m – размерности соответствующих пространств) называется оператором:

Если

 

Все прообразы нулевого элемента Lm называют ядром оператора А:

 

Определение 2. Оператор А называется линейным, если для выполняется равенство:

Примеры. 1) (Ø). 2)

3) 4)

 

5)

 

Пусть А – линейный оператор: базисы в соответствующих пространствах Ln и Lm.

 

Определение 3. Матрицей линейного оператора А называется матрица (будем обозначать ее через Аmn), столбцами которой являются координаты образов базисных элементов {e} в базисе {f }, т.е., если

, то или в матричной форме:

 

 

 

Замечание. Оператор, в частности линейный, определяет некоторое действие на элементы линейного пространства и не зависит от базиса. В свою очередь, матрица линейного оператора зависит как от базиса пространства прообразов, так и от базиса пространства образов.

 

Преобразование j линейного пространства Vп называется линейным преобразованием этого пространства, если сумму любых двух векторов а, b оно переводит в сумму образов этих векторов,

 

(a+b) j =aj + bj (1)

 

а произведение любого вектора а на любое число а переводит в произведение образа вектора а на это же число а,

 

(aa) j=a(aj) (2)

 

Из этого определения немедленно вытекает, что линейное преобразование линейного пространства переводит любую линейную комбинацию данных векторов а1, а2,…, аn, в линейную комбинацию (с теми же коэффициентами) образов этих векторов

 

(a1а1+ a2 а1+… an а1)j = a1(а1j) +a2(а2j) + …+an(аnj) (3)

28. Собственные векторы линейного преобразования, векторы, которые при этом преобразовании не меняют своего направления, а только умножаются на скаляр. Например, Собственные векторы преобразования, составленного из вращении вокруг некоторой оси и сжатия к перпендикулярной ей плоскости, служат векторы, направленные по этой оси. Координаты х1, х2,..., xn Собственные векторы линейного преобразования n-мерного пространства с матрицей преобразования ||aik|| удовлетворяют системе однородных линейных уравнений , где l — одно из собственных значений этой матрицы. Если матрица преобразования самосопряжённая (см. Самосопряжённая матрица), то Собственные векторы взаимно перпендикулярны. При самосопряжённом преобразовании сфера переходит в эллипсоид, главными осями которого являются Собственные векторы преобразования.

 

Собственные векторы и собственные значения линейного оператора

 

Ненулевой вектор называется собственным вектором линейного оператора , если ( для комплексного ), такое, что Число называется собственным числом (собственным значением) оператора f, соответствующим этому собственному вектору.

 

Если в некотором базисе оператор f имеет матрицу А и в том же базисе вектор имеет координатный столбец X, то или

 

Собственные числа линейного оператора - корни характеристического уравнения , где - матрица оператора f, - символ Кронекера.

 

Для каждого собственного значения соответствующие собственные векторы могут быть найдены из матричного уравнения или соответствующей ему системы линейных уравнений

 

Линейный оператор называется оператором простой структуры, если существует базис, состоящий из собственных векторов этого оператора. Матрица линейного оператора в этом базисе имеет вид

 

где - соответствующие собственные значения.

29.

Квадратичная форма — функция на векторном пространстве, задаваемая однородным многочленом второй степени от координат вектора. Пусть есть векторное пространство над полем и — базис в .

 

Функция называется квадратичной формой, если её можно представить в виде

где , а — некоторые элементы поля К.

Свойства







Дата добавления: 2015-09-07; просмотров: 412. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия