Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Умножение





1)Пусть x > 0 и y > 0 - произвольные вещественные числа и пусть xr и yr- любые рациональные числа, удовлетворяющие неравенствам: 0 < xr £ x, 0 < yr £ y.

Рассмотрим множество {xr yr}, где умножение производится по правилу для рациональных чисел. Оно ограниченно сверху и поэтому имеет точную верхнюю грань. По определению xy = { }

2) " x: x ×0 = 0× x = 0.

3) если x ¹ 0, y ¹ 0, то

xy =

 

Вычитание и деление вещественных чисел вводятся как операции, обратные сложению и умножению. Разность x и y - это вещественное число z, такое, что z + y = x. Можно доказать, что " x и y разность $ и единственна. Частное от деления x на y ¹ 0 - это вещественное число z, такое, что zy = x. Можно доказать, что " x и y ¹ 0 частное существует и единственно.

3 Понятие функции. Определение предела функции.

Пусть Х - числовое множество. Если каждому х Î Х поставлено в соответствие некоторое (единственное) число y, то говорят что на множестве Х определена (задана) функция и пишут

y = f (x), x Î X.

Множество X называется областью определения функции, х - аргументом функции или независимой переменной.

Число у, соответствующее данному х, называется частным значением функции в точке х, а множество { y } = Y, называется множеством значений функции.

Пусть X - числовое множество.

Число a (a Î X, либо a Ï X) называется предельной точкой множества X, если в " окрестности точки a содержатся точки (хотя бы одна) из множества X, отличные от а: x Î X, x ¹ a.

Пример 1:

X = (a < x < b)

" точка из (a, b) а также точки a и b - предельные точки X.

Все остальные точки не являются предельными точками X.

Пример2:

{ n }=1,2,3…. Это множество не имеет предельных точек.

Определение предела функции по Коши. Пусть f(x) определена на Х и пусть a -предельная точка X.

Число b называется пределом f (x) в точке a, если " e > 0 $ d > 0 такое, что

" ч Î Ч б 0 Б / ч - ф / Б d Ж / а (ч) - и / Б e ю

Число b называется пределом функции f (x) в точке a (при x ® a) если " e > 0 $ d > 0, такое, что

" x Î X, 0 < | x - a | < d: | f (x) - b | < e.

Обозначение: f (x) = b.

Множесво {0 < | x - a | < d} называется проколотой d-окрестностью точки a.

Геометрическая интерпретация определения предела функции.

(вставить рисунок)

заметим, что 0 < | x - a | < d Û

| f (x) - b | < e Û b - e < f (x) < b + e.

С геометрической точки зрения тот факт, что f (x) = b, означает, что для значений аргумента из проколотой d-окрестности точки a график функции y = f (x) лежит в полосе между прямыми

y = b - e и y = b + e. При этом в самой точке a f (x) может быть не определена, либо её значение в данной точке может выходить за пределы данной полосы.

 

Замечание 1.

Функция может иметь в данной точке только один предел. В самом деле, допустим, что f (x) имеет в точке a два предельных значения: b и c.

Возьмём e столь малым, чтобы e-окрестности точек b и c не пересекались.

Тогда для значений аргумента из проколотой окрестности точки a значения функции должны лежать одновременно в e-окрестности b и в e-окрестности точки c, чего не может быть так как эти e-окрестности не пересекаются.

Функция y = f (x) называется ограниченной сверху (снизу) на множестве X, если $ число

M (m), " x Î X: f (x) £ M (f (x) ³ m). При этом число M (m) называют верхней (нижней) гранью функции f (x) на множестве X.

f (x) называется ограниченной на множестве X, если она ограничена на этом множестве и сверху и снизу, то есть $ M и m, " x Î X: m £ f (x) £ M.
Эквивалентное определение ограниченной функции:

f (x) называется ограниченной на X,если $ A >0, " x Î X: | f (x) | £ A.

Замечание 2.

Если функция f(x) имеет предел в точке a, то она ограничена в некоторой окрестности этой точки. Утверждение следует непосредственно из определения предела.

 

Примеры:

1) f (x) = b = const (" x).

f (x) = b (" a).

В самом деле, " e > 0 возьмем " d > 0. Тогда " x, | x - a | < d: | f (x) - b | = | b - b | = 0 < e.

2) f(x) =

(рисунок)

f (x) = b.

3) f (x) =

рисунок

f (x) = b.

4) f (x) = x (" x).

f (x) = а.

В самом деле, "e > 0 возьмём d = e. Тогда " x, | x - a | < d = e: | - a | = | x - a | < e.

Это и означает, по определению предела, что f (x) = a.

7) f (x) = sin (x ¹ 0). Докажем, что не существует.

(Pисунок)

Предположим, что $ = b. Возьмём e = 1. Согласно определению предела функции,

$ d > 0: " x, 0 < | x | < d: | sin - b | < 1.

Возьмём = , = . Тогда для достаточно большого натурального n будут выполнены неравенства:

0 < < d, 0 < < d. И, следовательно, | sin - b | < 1, т.е. | 1 - b | < 1, и также

| sin - b | < 1, т.е. | 1 + b | < 1.

При любом b подчёркнутые неравенства противоречат друг другу, и это доказывает, что

не существует.

6) Докажем, что sin x =0.

Предварительно докажем неравенствa sin x < x < tg x при 0 < x < .

(рисунок)

, то есть

sin x < × x < tg x. Итак, sin x < x < tg x при 0 < x < Þ | sin x | < | x | < | tg x |

при 0 < | x | < . Воспользуемся подчеркнутым неравенством. Зададим произвольное e > 0 и

возьмём d = e. Тогда. Если 0 < | x - 0 | < d = e, то | sin x - 0 | = | sin x | < | x | < e.

Это и означает по определению, что sin x = 0.







Дата добавления: 2015-10-01; просмотров: 431. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия