Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Диференціальні форми на допустимих множинах





Нехай М — множина в .

За допомогою операції над формами в точці очевидним чином визначаємо додавання і добуток диференціальних форм на множині М:

При такому означенні диференціальні р-форми на М створюють векторний простір.

Якщо кожній точці х М ми поставимо у відповідність диференціальну р-форму

то ми отримаємо деяку визначену диференціальну форму на множині М, яку ми знову будемо позначати символом . Всяку диференціальну форму порядку р можна единим чином записати в канонічному вигляді

де —деякі дійсні функції, визначені на множині М. Тому розумно слідуюче

Означення 4.2. Диференціальна р-форма на множині М називається неперервною в точці х М, якщо коефіцієнти форми , записаної в канонічному вигляді, неперервні в точці х0. Якщо множина М допустима, то форма називається диференційованою (відповідно неперервно диференційованою, n раз неперервно диференційованою, незкінченно диференційованою), якщо цією властивістю володіють функції .

На векторних просторах диференційовних р-форм вводять диференціальний оператор, що являє собою узагальнення поняття повного диференціала функції. Нагадаємо спочатку це останє поняття.

Якщо функція f диференційована в точці х0 і , то умова

визначає деяку пфаффову форму — повний диференціал функції . Справедливе правило Лейбніца

Ось канонічний вигляд форми :

Якщо функція диференційована в кожній точці множини М, то являється диференціальною 1-формою на множині М. Тепер ми дамо

Означення 4.3. Нехай

— деяка р-форма, визначена на допустимій множині М і диференційована в точці х0 М. Під зовнішнім диференціалом форми в точці х0 розуміють диференціальну форму порядку р+1

визначену в точці х0.

Форму називають також зовнішньою похідною форми . По більшій мірі ми будемо писати скорочено: . Таким чином,

Якщо форма диференційована на всій множині М, то відповідність є визначеною на множині М (р+1)-формою . Очевидно, являється R-лінійним оператором:

Теорема 4.1. Якщо і — диференціальні форми відповідно поряду р і q, визначені на допустимій множині М і диференційовані в точці х0 М, то

Теорема 4.2 Нехай f – функція, диференційована на компактному кубі М з ребрами, паралельними осям координат, і двічі диференційована в точці х0 М. Тоді в точці х0.

Теорема 4.3. Нехай - диференціальна форма, диференційована на компактному кубі М з ребрами, паралельними осям координат, і двічі диференційована в точці х0 М, то в цій точці .

Введемо слідуючу термінологію:

Означення 4.4. Диференційована (в точці х0) диференціальна форма називається замкнутою (в точці х0), якщо =0 (відповідно ). Диференційовна форма називається точною (в точці х0), якщо існує диференційована (в точці х0) диференціальна форма , для якої (відповідно ).

Із теореми 4.3 випливає

Теорема 4.4. Якщо диференціальна форма на відкритій множині М являється точною, то вона замкнута.

На закінчення розглянемо ще поведінку диференціальних форм і зовнішнього диференціала при диференційованих відображеннях. Нехай М — допустима множина в і —довільна множина. Нехай, далі, диференційовне відображення. Якщо відображення задається функціями і

- деяка диференціальна форма порядку р на множині , то умова

(де у= (х))

визначає на множині М диференціальну р-форму , яка може бути записана у вигляді

.

Якщо відображення F нескінченно диференційоване і множина N допустима, то форма володіє тими ж властивостями диференційованості, що і форма . Має місце

Теорема 4.5. Нехай форма диференційована в точці (множина N повинна бути допустимою), і нехай відображення Р двічі диференційоване в точці х0, для якої .Нехай, крім того, існує такий компактний куб U з ребрами, паралельними осям координат, що х0. Тоді







Дата добавления: 2015-10-02; просмотров: 389. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия