Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Векторний і координатний запис формули Стокса





Нехай замкнена кусково-гладка крива Г являється межею кусково-гладкої поверхні S. Нехай поверхня S міститься в деякій трьохмірній області G R3, у всіх точках якої визначені і неперервні функції трьох змінних P, Q, R, а також їх частинні похідні. Тоді криволінійний інтеграл другого роду по кривій Г пов’язаний з поверхневим інтегралом другого роду по поверхні S формулою Стокса:

при чому напрямок контуру Г (в криволінійному інтегралі) і вибір додатного напрямку нормалі (в поверхневому інтегралі) узгоджені за «правилом буравчика» - додатною рахується та сторона поверхні, на якій додатній напрямок контуру відповідає руху проти часової стрілки (див мал.1).

Рис.1. Узгодження орієнтації в формулі Стокса

Не важко побачити, що у випадку, коли крива Г лежить в площині xOy, формула Стокса переходить в відому формулу Гріна, яка зв’язує криволінійний інтеграл першого роду по плоскій кривій з подвійним інтегралом по області, обмеженій даною кривою (див. рис.2).

Рис.2. Обхід границі області в формулі Гріна

Загальний випадок формули Стокса формально виходить з формули Гріна циклічною перестановкою координат:

x→y→z→x, P→Q→R→P

Нехай - одиничний вектор зовнішньої нормалі до поверхні S. Тоді

де і - кути, які утворює цей вектор з координатними осями (косинуси цих кутів називають «направляючими косинусами»).

Рис.3. Направляючі косинуси нормалі

 

Оскільки зв'язок між поверхневими інтегралами першого і другого роду задається формулою

,

Формулу Стокса можна переписати у вигляді (рис.3.):

 

При знаходженні визначника третього порядку під «множенням» знака диференціювання (наприклад, ) на функцію підрозумовується знаходження відповідної частинної похідної.

Розглянемо вектор , координатами якого є величини P, Q, і R:

.

Не важко побачити, що під знаком поверхневого інтеграла першого роду стоїть скалярний добуток вектора на вектор

,

який називається ротором вектора (позначається rot ). Якщо ввести формальний вектор «набла» рівністю

,

то ротор можна формально представити, як векторний добуток вектора «набла» на вектор F:

.

Позначимо радіус-вектор довільної точки простору . Відомо, що координати радіус-вектора є координатами точки, на яку він вказує:

.

Введемо вектор елементарного переміщення

,

тоді формулу Стокса можна записати у векторній формі:

Криволінійний інтеграл по замкнутому контуру називається циркуляцією векторного поля, поверхневий інтеграл другого роду означає потік через поверхню. Отже, формула Стокса, допускає наступне словесне формулювання:

циркуляція векторного поля по замкнутому контуру дорівнює потоку його ротора через поверхню, що стягується цим контуром.







Дата добавления: 2015-10-02; просмотров: 438. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия