Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методические указания по выполнению задания





 

В задаче № 1 требуется выполнить проектировочный расчет плоской рамы, элементы которой находятся в разных условиях нагружения и имеют различную форму сечения.

Чтобы определить вид нагружения каждого участка рамы, необходимо, пользуясь методом сечений, построить эпюры внутренних силовых факторов. С учетом того, что касательные напряжения, связанные с изгибом, в сечениях сплошной формы обычно невелики, эпюры и строить необязательно, ограничившись построением эпюр крутящих и изгибающих моментов.

Если участок имеет круглое или кольцевое сечение и в его сечениях согласно построенным эпюрам возникают изгибающие и крутящие моменты, следует определить сечение, в котором эти моменты наибольшие. Это сечение называют опасным, так как в нем имеются две точки, также называемые опасными, в которых расчетные напряжения достигают наибольших значений в сравнении с любыми другими точками участка. Опасные точки находятся на концах диаметра, перпендикулярного к вектору результирующего изгибающего момента в сечении:

 

(8.1)

Условие прочности для пластичных материалов согласно гипотезе наибольших касательных напряжений (третья гипотеза прочности) и гипотезе удельной потенциальной энергии формоизменения (четвертая гипотеза прочности), устанавливающим критерии пластичности, в случае круглого или кольцевого сечения записывается в виде:

 

(8.2)

где – эквивалентное (расчетное) напряжение опасной точки по соответствующей гипотезе прочности; Wx – осевой момент сопротивления сечения, вычисляемый для круглого (диаметром D) и кольцевого сечений соответственно по формулам (d – внутренний диаметр кольца, D – наружный):

 

(8.3)

– эквивалентный (расчетный) момент по третьей или четвертой гипотезе прочности соответственно:

(8.4)

(8.5)

где и – изгибающие моменты в сечении; – крутящий момент в этом же сечении.

Моменты , , могут достигать наибольших значений не в одном и том же, а в разных сечениях. В этом случае приходится вычислять эквивалентный момент по формуле (8.4) или (8.5) в нескольких (предположительно опасных) сечениях с тем, чтобы найти его наибольшее значение.

В случае проектировочного расчета необходимые размеры сечения определяются по условию прочности (8.2):

(8.6)

Если участок рамы, находящийся в условиях изгиба с кручением, имеет некруглое, в частности прямоугольное сечение, то понятие "эквивалентный (расчетный, приведенный) момент" неприменимо.

Поскольку наибольшие значения напряжений от кручения и изгиба могут возникать в разных точках исследуемого сечения, опасными могут быть точки с наибольшими нормальными напряжениями, точки с наибольшими касательными напряжениями или точки, в которых нормальные и касательные напряжения имеют промежуточные значения. Указать опасную точку опасного сечения часто можно, лишь вычислив значения эквивалентных напряжений в нескольких (предположительно опасных) точках и сравнив полученные результаты.

Эквивалентные напряжения при изгибе с кручением в случае некруглых сечений вычисляют:

– по третьей гипотезе прочности:

; (8.7)

– по четвертой гипотезе прочности:

. (8.8)

При этом нормальные напряжения s следует определять по формуле

, (8.9)

где изгибающие моменты Мх, Му и координаты точки (х, у), в которой определяются напряжения, берутся по абсолютной величине, а знак напряжений устанавливается по правилу: при растяжении соответствующего волокна s > 0, а при сжатии – s < 0, что легко определить по рисунку сечения и направлению изгибающих моментов Мх и Му в этом сечении.

Наибольшие значения касательных напряжений в прямоугольном сечении возникают в крайних точках сечения, расположенных посередине длинных сторон:

, (8.10)

где Wk – момент сопротивления сечения при кручении:

, (8.11)

где b – длина короткой стороны; b – коэффициент, выбираемый из справочной таблицы 8.3.

Касательные напряжения, возникающие посередине коротких сторон сечения, имеют меньшие значения:

, (8.12)

где g – коэффициент, меньший единицы.

Значения коэффициентов b и g зависят от отношения длин сторон прямоугольника (табл. 8.3) [1].

 

Таблица 8.3 – Значения коэффициентов a, b, g

    1,5 1,75   2,5        
0,140 0,294 0,375 0,457 0,622 0,790 1,123 1,789 2,456
0,208 0,346 0,418 0,493 0,645 0,801 1,128 1,789 2,456
    0,859 0,820 0,795 0,766 0,753 0,745 0,743 0,742

 

Коэффициент a используется при вычислении геометрической характеристики крутильной жесткости , необходимой для вычисления угла закручивания j стержня длиной ;:

(8.13)

где G – модуль упругости материала при сдвиге;

. (8.14)

В некоторых случаях при определении касательных напряжений следует учитывать и напряжения , возникающие от изгиба ( ).

По условию прочности sэкв < [ s ], где sэкв определяется по (8.7) или (8.8), нетрудно определить размеры поперечного сечения стержня, так как соотношение этих размеров h / b задано.

Построение нейтральной оси поперечного сечения прямоугольной формы (согласно требованию п. 4 задачи № 1) нетрудно выполнить, вычислив угол наклона этой оси к главной центральной оси х сечения:

(8.15)

где – угол между силовой линией в сечении и главной центральной осью y сечения.

Угол считаем положительным, если силовая линия проходит через первый и третий квадранты системы главных центральных осей сечения.

При > 0 по (8.15) имеем < 0, то есть нейтральная ось отклоняется от оси х по ходу часовой стрелки.

Формула (8.15) соответствует косому изгибу, то есть изгибу, при котором в сечении возникают два изгибающих момента Мх и Му, а нормальная сила N отсутствует. Положение силовой линии, то есть следа плоскости действия результирующего изгибающего момента М в сечении, определяется по направлению перпендикуляра, проведенного через центр тяжести сечения к направлению вектора – мо-
мента М.







Дата добавления: 2015-10-02; просмотров: 640. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия