Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методические указания по выполнению задания





 

В задаче № 1 требуется выполнить проектировочный расчет плоской рамы, элементы которой находятся в разных условиях нагружения и имеют различную форму сечения.

Чтобы определить вид нагружения каждого участка рамы, необходимо, пользуясь методом сечений, построить эпюры внутренних силовых факторов. С учетом того, что касательные напряжения, связанные с изгибом, в сечениях сплошной формы обычно невелики, эпюры и строить необязательно, ограничившись построением эпюр крутящих и изгибающих моментов.

Если участок имеет круглое или кольцевое сечение и в его сечениях согласно построенным эпюрам возникают изгибающие и крутящие моменты, следует определить сечение, в котором эти моменты наибольшие. Это сечение называют опасным, так как в нем имеются две точки, также называемые опасными, в которых расчетные напряжения достигают наибольших значений в сравнении с любыми другими точками участка. Опасные точки находятся на концах диаметра, перпендикулярного к вектору результирующего изгибающего момента в сечении:

 

(8.1)

Условие прочности для пластичных материалов согласно гипотезе наибольших касательных напряжений (третья гипотеза прочности) и гипотезе удельной потенциальной энергии формоизменения (четвертая гипотеза прочности), устанавливающим критерии пластичности, в случае круглого или кольцевого сечения записывается в виде:

 

(8.2)

где – эквивалентное (расчетное) напряжение опасной точки по соответствующей гипотезе прочности; Wx – осевой момент сопротивления сечения, вычисляемый для круглого (диаметром D) и кольцевого сечений соответственно по формулам (d – внутренний диаметр кольца, D – наружный):

 

(8.3)

– эквивалентный (расчетный) момент по третьей или четвертой гипотезе прочности соответственно:

(8.4)

(8.5)

где и – изгибающие моменты в сечении; – крутящий момент в этом же сечении.

Моменты , , могут достигать наибольших значений не в одном и том же, а в разных сечениях. В этом случае приходится вычислять эквивалентный момент по формуле (8.4) или (8.5) в нескольких (предположительно опасных) сечениях с тем, чтобы найти его наибольшее значение.

В случае проектировочного расчета необходимые размеры сечения определяются по условию прочности (8.2):

(8.6)

Если участок рамы, находящийся в условиях изгиба с кручением, имеет некруглое, в частности прямоугольное сечение, то понятие "эквивалентный (расчетный, приведенный) момент" неприменимо.

Поскольку наибольшие значения напряжений от кручения и изгиба могут возникать в разных точках исследуемого сечения, опасными могут быть точки с наибольшими нормальными напряжениями, точки с наибольшими касательными напряжениями или точки, в которых нормальные и касательные напряжения имеют промежуточные значения. Указать опасную точку опасного сечения часто можно, лишь вычислив значения эквивалентных напряжений в нескольких (предположительно опасных) точках и сравнив полученные результаты.

Эквивалентные напряжения при изгибе с кручением в случае некруглых сечений вычисляют:

– по третьей гипотезе прочности:

; (8.7)

– по четвертой гипотезе прочности:

. (8.8)

При этом нормальные напряжения s следует определять по формуле

, (8.9)

где изгибающие моменты Мх, Му и координаты точки (х, у), в которой определяются напряжения, берутся по абсолютной величине, а знак напряжений устанавливается по правилу: при растяжении соответствующего волокна s > 0, а при сжатии – s < 0, что легко определить по рисунку сечения и направлению изгибающих моментов Мх и Му в этом сечении.

Наибольшие значения касательных напряжений в прямоугольном сечении возникают в крайних точках сечения, расположенных посередине длинных сторон:

, (8.10)

где Wk – момент сопротивления сечения при кручении:

, (8.11)

где b – длина короткой стороны; b – коэффициент, выбираемый из справочной таблицы 8.3.

Касательные напряжения, возникающие посередине коротких сторон сечения, имеют меньшие значения:

, (8.12)

где g – коэффициент, меньший единицы.

Значения коэффициентов b и g зависят от отношения длин сторон прямоугольника (табл. 8.3) [1].

 

Таблица 8.3 – Значения коэффициентов a, b, g

    1,5 1,75   2,5        
0,140 0,294 0,375 0,457 0,622 0,790 1,123 1,789 2,456
0,208 0,346 0,418 0,493 0,645 0,801 1,128 1,789 2,456
    0,859 0,820 0,795 0,766 0,753 0,745 0,743 0,742

 

Коэффициент a используется при вычислении геометрической характеристики крутильной жесткости , необходимой для вычисления угла закручивания j стержня длиной ;:

(8.13)

где G – модуль упругости материала при сдвиге;

. (8.14)

В некоторых случаях при определении касательных напряжений следует учитывать и напряжения , возникающие от изгиба ( ).

По условию прочности sэкв < [ s ], где sэкв определяется по (8.7) или (8.8), нетрудно определить размеры поперечного сечения стержня, так как соотношение этих размеров h / b задано.

Построение нейтральной оси поперечного сечения прямоугольной формы (согласно требованию п. 4 задачи № 1) нетрудно выполнить, вычислив угол наклона этой оси к главной центральной оси х сечения:

(8.15)

где – угол между силовой линией в сечении и главной центральной осью y сечения.

Угол считаем положительным, если силовая линия проходит через первый и третий квадранты системы главных центральных осей сечения.

При > 0 по (8.15) имеем < 0, то есть нейтральная ось отклоняется от оси х по ходу часовой стрелки.

Формула (8.15) соответствует косому изгибу, то есть изгибу, при котором в сечении возникают два изгибающих момента Мх и Му, а нормальная сила N отсутствует. Положение силовой линии, то есть следа плоскости действия результирующего изгибающего момента М в сечении, определяется по направлению перпендикуляра, проведенного через центр тяжести сечения к направлению вектора – мо-
мента М.







Дата добавления: 2015-10-02; просмотров: 640. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия