Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рівняння Максвелла





Дж. К. Максвелл записав свої геніальні рівняння в 1865 р. Рівняння Максвелла – це фундаментальні рівняння електродинаміки, які описують електромагнітні явища в будь-якому середовищі. Вони узагальнюють експериментальні і теоретичні праці фізиків першої половини XІX ст. і, насамперед, дослідження М. Фарадея. Основні закони електродинаміки Максвелл сформулював у вигляді чотирьох рівнянь, які подамо в інтегральній формі, як в найбільш простій і наочній.

Перше рівняння Максвелла спирається на закон Біо–Савара–Лапласа та поняття струму зміщення. Виділимо в провіднику, в якому існує змінний струм, довільну площадку S, обмежену контуром l. Тоді

, (4.88)

де Hl – проекція вектора напруженості магнітного поля на напрям дотичної до контура l у даній точці, jn – нормальна до вибраної площадки складова густини струму провідності, Dn – нормальна до площадки складова вектора електричної індукції. Тут вжита частинна похідна ¶ Dt, щоб врахувати факт залежності D як від часу, так і від просторової координати. Струм зміщення виникає лише тоді, коли D зміню­ється з часом. Це рівняння показує, що магнітне поле вихрове і що воно виникає незалежно від наявності постійних магнітів. Виникнення магнітного поля зумовлене двома факторами: рухом електричних зарядів (струм провідності) і зміною в часі електричного поля (струм зміщення).

Друге рівняння відображає закон електромагнітної індукції Фарадея:

eі = .

ЕРС, як відомо, дорівнює роботі сторонніх сил по переміщен­ню одиничного заряду, тобто , тому матимемо

= – ¶ Фt ® = – dS, (4.89)

де El – проекція вектора напруженості електричного поля на напрям дотичної до контура у даній точці, Bn – нормальна до поверхні складова вектора магнітної індукції. З цього рівняння видно, що крім електростатичного поля в природі існує електричне поле, джерелом якого є змінне магнітне поле. Всяка зміна електричного поля зумовлює появу змінного магнітного поля, лінії напруженості якого замкнені і охоплюють лінії електричного поля (перше рівняння); всяка зміна магнітного поля зумовлює появу змінного електрич­ного поля, лінії напруженості якого замкнуті й охоплюють лінії магнітного поля (друге рівняння).

Третє рівняння Максвелла показує, що джерелом електричного поля є електричні заряди:

= q.

Ліва частина цього рівняння – потік вектора індукції електричного поля через замкнену поверхню площею S.

Четверте рівняння відображає факт відсутності маг­ніт­них зарядів. Повний потік вектора магнітної індукції В через замкнену поверхню площею S дорівнює нулю:

= 0.

Наведені рівняння Максвелла не враховують будову речовини і взаємодію електромагнітного поля з частинками речовини. Вплив середовища на електромагнітне поле задається через його електропровідність, а також діелектрич­ну e і магнітну m проникності. Тому до рівнянь Максвелла слід додати ще три рівняння, які називаються матеріаль­ни­ми:

,

,

j = s E.

Рівняння Максвелла описують величезне коло явищ (електродинаміка, оптика, електротехніка, радіотехніка, астрофізика, фізика плазми тощo). Теорія Максвелла не тільки пояснила вже відомі факти, а й передбачила нові і важливі явища. Абсолютно новим у цій теорії було припущення Максвелла про магнітні поля струмів зміщення. На основі цього припущення Максвелл предбачив існування електромагнітних хвиль, тобто змінного електромагнітного поля, яке поширюється в просторі з певною швидкістю. Теоретичне дослідження властивостей електромагнітних хвиль привело згодом Максвелла до створення електромагнітної теорії світла. Пізніше експериментально вдалося отримати електромагнітні хвилі і провести досліди, які блискуче підтвердили електромагнітну теорію світла, а з нею і всю теорію Максвелла.







Дата добавления: 2015-10-12; просмотров: 650. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия