Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выполнение работы. Производная . В соответствии с условием достижимости (4.3.12) и функцией делаем вывод





Проиллюстрируем методику синтеза адаптивной системы на основе алгоритма скоростного градиента на простейшем примере, где управляемый объект ― неустойчивое апериодическое звено , . Ставится задача стабилизации этого неустойчивого звена с целью управления при . Для этого примем оценочную функцию . Целевое условие формально соответствует предельному равенству . Следуя методу скоростного градиента, примем . Тогда уравнение обобщенного настраиваемого объекта примет вид: .

 
 

Производная . В соответствии с условием достижимости (4.3.12) и функцией делаем вывод, что при (выбор числа зависит от значений коэффициента ) существует такое, что . Следовательно, выполнимо предельное неравенство (4.3.12); в данном случае или . Алгоритм адаптации на основе алгоритма скоростного градиента принимает вид , а система уравнений адаптивной системы включает три уравнения:

Соответствующая структурная схема системы изображена на рис. 4.3.2.


Условия гладкости и непрерывности по и для приведенных в примере функций очевидным образом выполняются. Условие выпуклости выполняются в силу линейности по : из (4.3.11) следует: ; в данном случае неравенство (нестрогое) выполняется, так как ― тождество. Таким образом, можно сделать вывод, что структура регулятора в обобщенном настраиваемом объекте выбрана правильно. Цель управления достигается: при , причем классом адаптации является множество . Отметим, в алгоритме адаптации используется измеряемая переменная и отсутствует неизвестный параметр объекта управления.

На рис. 4.3.3, а, б приведены схема и графики переходных процессов в адаптивной системе (рис. 4.3.2). Моделирование выполнено с использованием системы SIMULINK пакета программ MATLAB® .

Начальные условия при моделировании приняты следующие: .

Значение коэффициента изменяется как функция , где . На рис. 4.3.3, б изображены два семейства графиков, полученных при значениях и и иллюстрирующих влияние коэффициента на сходимость алгоритма скоростного градиента в данном примере.

Содержание отчета

1. Структурная схема системы управления. 2) Результаты моделирования







Дата добавления: 2015-10-15; просмотров: 484. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия