Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Принцип построения систем прямого адаптивного управления с неявной эталонной моделью объекта





В исследуемом типе адаптивных систем прямого действия ставится задача воспроизведения заданной функции на выходе минимально - фазового объекта управления с уравнением вход-выход вида:

(3.2.1)

Эталонное движение, определяющее требуемую реакцию объекта на задающие воздействия , определим порождающим уравнением вида:

(3.2.2)

В данном случае эталонная модель движения есть решение уравнения (3.2.2) того же порядка, что и уравнение (3.2.1). Однако это не является обязательным в постановке задачи. В уравнении (3.2.2) сигнал ― задающее или воспроизводимое воздействие на входе основного контура адаптивной системы. Коэффициенты выбираются такими, что полином

(3.2.3)

– гурвицев; для и полином также гурвицев.

С введением желаемой и устойчивой эталонной траектории движения цель управления задается предельным равенством:

. (3.2.4)

Покажем, что такое управление существует и определим закон, которому оно подчиняется. Для этого их (3.2.1) вычтем (3.2.2) и добавим к обеим частям получившейся разности . Тогда с учетом того, что , получим следующее соотношение:

(3.2.5)

Из (3.2.5) следует, что при управлении , удовлетворяющему дифференциальному уравнению:

(3.2.6)

где , ; , следует . Так как полином – гурвицев, то и целевое условие выполняется. Таким образом, цель управления, заданная предельным равенством (3.2.4), может быть переформулирована в виде эквивалентного условия на выбор параметров алгоритма управления (2.2.6). Структура адаптивной системы управления в соответствие с уравнением (2.2.6) изображена на рис. 3.2.1.

Обозначим вектор параметров идеального регулятора

, где . Как видно, настраиваемыми должны быть параметров согласно условиям:

(3.2.7)

и – “новое” управление: .

Часть параметров регулятора . При настройке параметров регулятора , соответствующих условиям (3.2.7) и называемых далее "идеальными", достигается цель управления (3.2.4). Регулятор с настройками также будем называть идеальным регулятором. Его структурная схема изображена на рис. 3.2.1, а. На рис. 3.2.1, б основной контур “свернут” в обобщенный настраиваемый объект, для настройки которого в блоке алгоритмов адаптации используются измеряемые переменные , и .

 
 

На рис. 3.2.1 обозначены операторные функции:

Так как в структуре "идеального" регулятора оператор является характеристическим полиномом, то становится понятным требование минимально-фазовости полинома в уравнении ОУ (3.2.1).







Дата добавления: 2015-10-15; просмотров: 766. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия