Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дискретные адаптивные системы с неявной эталонной моделью





Методика синтеза дискретных адаптивных систем с неявной эталонной моделью, предназначенных для решения наиболее общей задачи управления – задачи слежения с заданной динамикой, аналогична методике синтеза непрерывной адаптивной системы с градиентным алгоритмом адаптации.

Пусть математическая модель объекта задана в виде линейного разностного уравнения:

(5.4.1)

где

- гурвицевы полиномы, т. е. линейный объект является минимально-фазовым, - неизмеряемая помеха, но ограниченная по уровню .

Эталонную модель зададим уравнением вход-выход:

(5.4.2)

где полиномы

— гурвицевы, коэффициенты , известны.

Целевые условия запишем в виде предельного равенства:

(5.4.3)

Введём обобщённую ошибку:

. (5.4.4)

Если из (5.4.1) вычесть (5.4.2) и добавить к обеим частям то, учитывая, что , получим «идеальный» дискретный закон управления:

(5.4.5)

Уравнение (5.4.5) можно записать в векторной форме:

, (5.4.6)

где «идеальный» при вектор параметров регулятора основного контура с размерностью N=n+2(m+1); — вектор измеряемых значений решётчатых функций.

Таким образом, закон регулирования в виде (5.4.5) и (5.4.6) линеен по параметрам . Вектор содержит ненастраиваемую компоненту — стационарная часть адаптивного регулятора и настраиваемую – вектор в соответствии с алгоритмом и целевым условием адаптации. Регулятор «идеален» в смысле достигаемой цели управления (5.4.3), если все , .

Целевое условие адаптации и управления целесообразно выбирать в виде квадратичной функции

где вектор — вектор текущих и неизмеряемых параметров модели объекта.

Если нет гипотез о статистической природе измерений , то алгоритмом адаптации может быть детерминированный градиентный алгоритм с ограничением на шаг адаптации :

, (5.4.7)

где число — верхняя оценка неизвестного коэффициента ; тогда

(5.4.8)

Работоспособность алгоритма (5.4.7), (5.4.8), т. е. сходимость при , показывается методом Ляпунова, где функцией Ляпунова в данном случае является квадрат параметрического рассогласования: . Из условия следует условие сходимости в виде (5.4.8).







Дата добавления: 2015-10-15; просмотров: 602. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия