Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дискретные адаптивные системы с неявной эталонной моделью





Методика синтеза дискретных адаптивных систем с неявной эталонной моделью, предназначенных для решения наиболее общей задачи управления – задачи слежения с заданной динамикой, аналогична методике синтеза непрерывной адаптивной системы с градиентным алгоритмом адаптации.

Пусть математическая модель объекта задана в виде линейного разностного уравнения:

(5.4.1)

где

- гурвицевы полиномы, т. е. линейный объект является минимально-фазовым, - неизмеряемая помеха, но ограниченная по уровню .

Эталонную модель зададим уравнением вход-выход:

(5.4.2)

где полиномы

— гурвицевы, коэффициенты , известны.

Целевые условия запишем в виде предельного равенства:

(5.4.3)

Введём обобщённую ошибку:

. (5.4.4)

Если из (5.4.1) вычесть (5.4.2) и добавить к обеим частям то, учитывая, что , получим «идеальный» дискретный закон управления:

(5.4.5)

Уравнение (5.4.5) можно записать в векторной форме:

, (5.4.6)

где «идеальный» при вектор параметров регулятора основного контура с размерностью N=n+2(m+1); — вектор измеряемых значений решётчатых функций.

Таким образом, закон регулирования в виде (5.4.5) и (5.4.6) линеен по параметрам . Вектор содержит ненастраиваемую компоненту — стационарная часть адаптивного регулятора и настраиваемую – вектор в соответствии с алгоритмом и целевым условием адаптации. Регулятор «идеален» в смысле достигаемой цели управления (5.4.3), если все , .

Целевое условие адаптации и управления целесообразно выбирать в виде квадратичной функции

где вектор — вектор текущих и неизмеряемых параметров модели объекта.

Если нет гипотез о статистической природе измерений , то алгоритмом адаптации может быть детерминированный градиентный алгоритм с ограничением на шаг адаптации :

, (5.4.7)

где число — верхняя оценка неизвестного коэффициента ; тогда

(5.4.8)

Работоспособность алгоритма (5.4.7), (5.4.8), т. е. сходимость при , показывается методом Ляпунова, где функцией Ляпунова в данном случае является квадрат параметрического рассогласования: . Из условия следует условие сходимости в виде (5.4.8).







Дата добавления: 2015-10-15; просмотров: 602. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия