ОСНОВНЫЕ СВЕДЕНИЯ
При исследовании технологических процессов и объектов часто оказывается, что выходной параметр и фактор (входной параметр) оказываются случайными величинами. В результате дискретных измерений фактора X (например, массы 500-миллиметрового отрезка пряжи) и выходного параметра Y (например, разрывной нагрузки вышеупомянутого отрезка) получают две последовательности сопряженных случайных чисел: Х1, Х2,..., Хm; Y1, Y2,..., Ym. Каждой паре полученных значений соответствует определенная точка в корреляционном поле точек. Для оценки степени взаимосвязи двух случайных величин X и Y рассчитывают числовую характеристику rYX, называемую коэффициентом парной корреляции. Для корреляционной взаимосвязи двух случайных величин характерно наличие двух зависимостей (X) и (Y), которые в корреляционном поле точек изображаются в виде сопряженных прямых. Причем, чем меньше разброс точек в корреляционном поле, тем сильнее теснота связи между случайными величинами и тем меньше угол φ (рисунок 3.1) между сопряженными прямыми. В практике исследований процессов легкой промышленности корреляционная связь между случайными величинами считается:
· слабой при 0,3 < | rYX | < 0,4 · средней при 0,4 < | rYX | < 0,7 · сильной при 0,7 < | rYX | < 0,9 · очень сильной при 0,9 < | rYX |.
Для определения коэффициентов парной корреляции и построения однофакторной корреляционной модели необходимо получить две совокупности сопряженных случайных величин (т.е. совокупность пар случайных значений). Воспользуемся совокупностями случайных величин, приведенными в приложении А.
|