Студопедія
рос | укр

Головна сторінка Випадкова сторінка


КАТЕГОРІЇ:

АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія






Сучасна законодавча концепція місцевого самоврядування


Дата добавления: 2015-10-19; просмотров: 1722



Особенности файловой системы.

Организация файловой системы в первом значении этого термина означает рассмотрение структур, в которые могут быть организованы файлы на носителях данных. Существует несколько видов таких структур: линейные, древовидные, объектные и другие, но в настоящее время широко распространены только древовидные структуры.

Каждый файл в древовидной структуре расположен в определенном хранилище файлов — каталоге, каждый каталог, в свою очередь, также расположен в некотором каталоге. Таким образом, по принципу вложения элементов файловой системы (файлов и каталогов) друг в друга строится дерево, вершинами которого являются непустые каталоги, а листьями — файлы или пустые каталоги. Корень такого дерева имеет название корневой каталог и обозначается каким-либо специальным символом или группой символов (например, «/» в UNIX или «C:» в операционной системе Windows). Каждому файлу соответствует некоторое имя, определяющее его расположение в дереве файловой системы. Полное имя файла состоит из имен всех вершин дерева файловой системы, через которые можно пройти от корня до данного файла (каталога), записывая их слева направо и разделяя специальными символами-разделителями.

 

Рисунок 1.22. Индексная файловая система UNIX

 

В настоящее время существует огромное количество файловых систем, каждая из которых используется для определенной цели: для быстрого доступа к данным, для обеспечения целостности данных при сбоях системы, для простоты реализации, для компактного хранения данных, и т. д. Однако среди всего множества файловых систем можно выделить такие, которые обладают рядом схожих признаков, а именно:

 

 

• Презентация 2-05: индексный узел
Файлы и каталоги имеют несколько идентификаторов: помимо имён, с которыми обычно работают пользователи, каждому файлу соответствует уникальный в рамках файловой системы номер. Этот номер, называемый индексом файла, соответствует индексному узлу (i-node) — структуре на диске, в которой хранится служебная информация (так называемые «метаданные») о файле: расположение данных файла на диске, длина файла, владелец файла, права доступа и т. п. Таблица же связок типа «имя файла—i-node» — есть не что иное как содержимое каталогов.
Таким образом, каждый файл характеризуется одним i-node, но может быть связан с несколькими именами — в UNIX это называют жёсткими ссылками (см. Рисунок 1.23, «Пример жесткой ссылки»). При такой схеме физическое удаление данных файла с носителя происходит только тогда, когда удаляется последняя из существующих жёстких ссылок на этот файл.

 

 

Рисунок 1.23. Пример жесткой ссылки

• Важной особенностью таких файловых систем является то, что имена файлов зависят от регистра, другими словами файлы test.txt и TEST.txt отличаются (т. е. могут находиться в одном каталоге и быть при этом разными файлами).

• В определенных блоках физического носителя данных находится т. н. суперблок (см. рисунок Рисунок 1.22, «Индексная файловая система UNIX»). Местоположение суперблока на носителе определяется при создании файловой системы. Суперблок — это наиболее ответственная область файловой системы, содержащая информацию, необходимую для работы файловой системы в целом, а также — для её идентификации. В суперблоке находится «магическое число» — идентификатор файловой системы, отличающий её от других файловых систем, список свободных блоков, список свободных индексных узлов (i-node) и некоторая другая служебная информация.

• Помимо каталогов и обычных файлов для хранения информации, ФС может содержать следующие виды файлов:

• Специальный файл устройства

• Обеспечивает доступ к физическому устройству. При создании такого устройства указывается тип устройства (блочное или символьное), старший номер — индекс драйвера в таблице драйверов операционной системы и младший номер — параметр, передаваемый драйверу, поддерживающему несколько устройств, для уточнения о каком «подустройстве» идет речь (например, о каком из нескольких IDE-устройств или COM-портов). Устройства рассматриваются в разделе «Устройства и драйверы».

Именованный канал

• Используется для передачи данных между процессами, работает по принципу двунаправленной очереди (FIFO). Является одним из способов обмена данными между изолированными процессами (подробнее см. «Межпроцессное взаимодействие»).

Символьная ссылка

• Особый тип файла, содержимое которого — не данные, а имя какого-либо другого файла (см. Рисунок 1.24, «Пример символьной ссылки». Для пользователя такой файл в большинстве ситуаций неотличим от того, на который он ссылается: операции чтения, записи и пр. над символьной ссылкой работают так, как если бы они производились непосредственно над тем файлом, на который указывает ссылка. Символьные ссылки могут указывать также и на каталог: в этом случае они «работают» как каталоги.
Символьная ссылка имеет ряд преимуществ по сравнению с жёсткой ссылкой: она может использоваться для связи файлов в разных файловых системах (ведь номера индексных узлов уникальны только в рамках одной файловой системы). Кроме того, существование файла-ссылки совершенно независимо от существования того файла, на который он ссылается, поскольку в ссылке хранится только имя целевого файла, и нет никакой привязки к индексному узлу. Поэтому возможно удалять файл и ссылку независимо: причём в случае удаления целевого файла символьная ссылка продолжит существовать, но останется «битой», т. е. не позволяющей перейти ни к какому файлу.

 

Рисунок 1.24. Пример символьной ссылки

Сокет

• Предназначен для взаимодействия между процессами через специальное API, схожее с TCP/IP-сокетеми (подробнее см. «Межпроцессное взаимодействие»).

 

• Устроенные подобным образом файловые системы наследуют особенности оригинальной UNIX. К ним можно отнести, например: s5 (используемая в версиях UNIX System V), ufs (BSD UNIX), ext2, ext3, reiserfs (Linux), qnxfs (QNX). Все эти файловые системы различаются форматами внутренних структур, но совместимы с точки зрения основных концепций.

 

8) Назовите основные причины нарушения целостности файловой системы. Как устранить повреждения файловой системы?

Наиболее часто возникающие трудности связаны с перебоями в питании, неполадках в оборудовании или из-за ошибок оператора (например, некорректное выключение компьютера).

Работа с поврежденной файловой системой может привести к потерям данных и другим неполадкам. Большинство систем сконфигурировано таким образом, что команда fsck запускается автоматически при загрузке системы, поэтому возможные неполадки будут обнаружены и, возможно, исправлены перед тем, как система начнет использоваться. Если файловая система довольно большая по объему, то ее проверка может занять некоторое время, что создает определенные неудобства. Для того чтобы избежать проверки всей файловой системы, применяются различные способы контроля правильности ее отключении. Первый из них связан с тем, что если существует файл /etc/fastboot, то никаких проверок не производится. Второй способ заключается в том, что в файловой системе ext2 существует специальный флажок, расположенный в суперблоке, который используется для выявления корректности демонтирования файловой системы при последнем выключении компьютера. Эта возможность используется в программе e2fsck (версия команды fsck для файловой системы ext2fs) для избежания излишней проверки файловой системы, если флажок ее целостности установлен, то система была корректно демонтирована. Использование способа, связанного с файлом /etc/fastboot, зависит от программ, запускаемых при загрузке системы, а применение команды e2fsck работает в любом случае. Для более подробной информации о такой проверке см. man-руководство по e2fsck.

Автоматическая проверка используется только для файловых систем, устанавливаемых во время загрузки. Для проверки других систем команда fsck должна выполняться отдельно.

Если fsck находит неисправность, не подлежащую восстановлению, то могут потребоваться глубокие знания и понимание работы файловых систем и их типов.

Команда fsck должна использоваться только для демонтированных систем (за исключением системы root, смонтированной в режиме read-only во время загрузки), так как при ее работе используется прямой доступ к диску и информация о внесении каких-либо изменений в файловую систему может быть недоступна операционной системе, что, обычно, приводит к нарушению ее работы.

 

9) Как создается файловая система?

 

Общее дерево файлов и каталогов системы Linux формируется из отдельных "ветвей", соответствующих различным физическим носителям. Часто говорят, что оно формируется из отдельных файловых систем. Говорить так позволяет тот факт, что в UNIX нет понятия "форматирования диска" (и команды форматирования), а используется понятие "создание файловой системы". Когда мы получаем новый носитель, например, жесткий диск, мы должны создать на нем файловую систему. То есть каждому носителю ставится в соответствие отдельная файловая система. Чтобы эту файловую систему использовать для записи в нее файлов, надо ее вначале подключить в общее дерево каталогов ("смонтировать"). Вот и получается, что можно говорить о монтировании файловых систем или о монтировании носителей (с созданными на них файловыми системами).

Можно еще в виде предисловия отметить, что обычно жесткий диск предварительно разбивается на разделы (особенно современные диски, имеющие емкость, исчисляемую десятками гигабайт). Создание разделов облегчает выполнение резервного копирования, решение задач разграничения полномочий, повышает производительность и ограничивает потенциальный ущерб, наносимый вышедшими из-под контроля программами. Поэтому в дальнейшем будем говорить о создании файловой структуры в одном разделе (диск, не имеющий разделов, можно тоже рассматривать как один раздел).

Еще один момент, существенный в контексте этого раздела, связан с тем, что Linux может работать с разными типами файловых систем. "Родной" файловой системой для него в настоящее время является "вторая расширенная файловая система" (second extended filesystem) ext2fs. Ho в Linux можно работать и с 16-разрядной файловой системой FAT, создаваемой в MS-DOS, и с 32-разрядной FAT32, разработанной для MS Windows 95, и с файловой системой ISO9660, используемой для записи информации на CD-ROM, и с другими типами файловых систем (в число которых пока, правда, не входит NFTS). То есть, при рассмотрении вопросов создания и монтирования файловых систем надо постоянно помнить о том, что типы файловых систем на разных носителях могут различаться.

Итак, вначале рассмотрим случай, когда требуется создать в каком-то разделе диска файловую систему. Будем предполагать, что создается файловая система типа ext2fs (создание файловых систем других типов — тема для книг, посвященных другим операционным системам). Создание файловой системы типа ext2fs подразумевает создание в данном разделе на диске суперблока, таблицы индексных дескрипторов и совокупности блоков данных. Делается все это все с помощью команды mkfs. В простейшем случае достаточно дать эту команду в следующем формате:

[root]# mkfs -t ext2 /dev/hda5,

где /dev/hda5 надо, естественно, заменить указанием на соответствующее устройство или раздел. Например, если вы хотите создать файловую систему на дискете, то команда примет вид:

[root]# mkfs -t ext2 /dev/fd0

(Можно сказать, что мы "отформатировали дискету", но учтите, что в DOS или Windows такие дискеты не читаются. Для создания под Linux дискет, которые бы читались в DOS или Windows, служат специальные утилиты.)

После выполнения команды mkfs в указанном разделе будет создана файловая система ext2fs (еще раз повторю, что подробнее об этом вы узнаете в гл. 16). В новой файловой системе автоматически создается один каталог с именем lost+found. Он используется в экстренных случаях программой fsck, поэтому не удаляйте его. Для того, чтобы начать работать с новой файловой системой (например, переписать какие-то файлы на новый носитель), необходимо подключить ее в общее дерево каталогов, что делается с помощью команды mount.

В качестве параметров команде mount надо, как минимум, указать устройство и "точку монтирования". Точкой монтирования называется тот каталог в уже существующем и известном системе дереве каталогов, который будет теперь служить корневым каталогом для подключаемой файловой системы. Пример: команда

[root]# mount /dev/hdb1 /mnt/disk2

подсоединяет файловую систему первого раздела на втором жестком диске к каталогу /mnt/disk2 (этот каталог должен существовать!).

Отметим, что после монтирования файловой системы в каталог /mnt/disk2 прежнее содержимое этого каталога станет для вас недоступно (так же, как информация о прежнем владельце и правах доступа к этому каталогу) до тех пор, пока вы не размонтируете вновь подключенную файловую систему. Прежнее содержимое не уничтожается, а просто становится временно недоступным. Поэтому в качестве точек монтирования лучше использовать пустые каталоги (заранее заготовленные).

В той простейшей форме, которую мы использовали в приведенном выше примере, команда mount будет работать только при условии, что все недостающие ей для выполнения параметры она найдет в файле /etc/fstab. Если же такого файла не существует, или он не содержит необходимых данных, надо применять более полную форму команды mount:

[root]# mount -t type device path

где type задает тип файловой системы, device указывает, на каком устройстве (в каком разделе) она находится, а path задает точку монтирования.

Конфигурационный файл /etc/fstab используется в основном для того, чтобы обеспечить автоматическое монтирование файловых систем в процессе загрузки. Каждая строка этого файла содержит описание одной файловой системы и состоит из 6 полей, разделяемых пробелами (для удобочитаемости поля обычно выравнивают, но делать это не обязательно):

• имя устройства. В качестве имени может использоваться как имя локального устройства, например, /dev/hda5, так и путевое имя сетевой файловой системы NFS, например, pc21:/home/jim, что указывает на каталог /home/jim на машине с именем pc21;

• точка монтирования (полное имя каталога, в который будет монтироваться файловая система);

• тип файловой системы;

• опции монтирования (по умолчанию подразумевается rw — чтение, запись);

• уровень дампа. Это поле используется программой dump, предназначенной для создания резервных копий. Если файловая система должна участвовать в процессе резервного копирования, то здесь должно стоять число 1, если нет — 0. Возможны и другие значения (см. руководство к программе dump);

• порядок (приоритет) проверки файловых систем программой fsck. Системы с меньшими значениями этого поля проверяются раньше. Системы с одинаковыми номерами проверяются, если это возможно, параллельно.

• В настоящее время Linux поддерживает следующие типы файловых систем (см. страницу man fs, где дано их краткое описание): minix, ext, ext2, xia, msdos, umsdos, vfat, proc, nfs, iso9660, hpfs, sysv, smb, ncpfs. Вместо типа файловой системы в поле "тип файловой системы" (и в опции -t команды mount) можно задать значение auto. В таком случае команда mount попытается самостоятельно определить тип монтируемой файловой системы. Однако это во многих случаях приводит к ошибкам, поэтому лучше указать тип явно. Можно перечислить несколько типов (через запятую). В команде mount можно также вначале задать список типов файловых систем, которые не надо монтировать. Этот список задается с помощью флага no. Такая возможность может оказаться полезной в том случае, когда используется команда mount с аргументом -a. По этой команде производится монтирование всех файловых систем, перечисленных в файле /etc/fstab. С помощью дополнительного аргумента -t type в этом случае можно ограничиться монтированием файловых систем только определенного типа, а с помощью флага no можно указать типы, которые не надо монтировать. Например, команда

• [root]# mount -a -t nomsdos,ext

• монтирует все файловые системы, за исключением тех, которые относятся к типам msdos и ext.

• Когда монтируется файловая система, упомянутая в файле /etc/fstab, то в команде монтирования достаточно указать только один аргумент — либо имя устройства, либо точку монтирования. Все остальные параметры команда mount возьмет из файла /etc/fstab.

• Обычно монтировать файловые системы может только суперпользователь, но если в поле опций монтирования файла /etc/fstab указать опцию user, то соответствующую файловую систему смогут смонтировать все пользователи. Так, если в /etc/fstab имеется строка

• /dev/cdrom /cd iso9660 ro,user,noauto,unhide,

• то любой пользователь сможет смонтировать файловую систему на своем CDROM, используя команду

• [user]$ mount /dev/cdrom или [user]$ mount /cd

• В табл. 4.8 приведены еще некоторые опции, которые могут использоваться в команде mount и в файле /etc/fstab.

Таблица 4.8. Основные опции команды mount

    Опция     Значение
    async     Весь ввод-вывод в файловую систему должен производиться асинхронно
    auto     Файловая система может монтироваться командой mount c опцией -a
    defaults     Использовать набор опций, задаваемый по умолчанию: rw, suid, dev, exec, auto, nouser, async
    dev     Файлы байт-ориентированных и блок-ориентированных устройств в файловой системе интерпретируются как специальные файлы
    noauto     Файловая система может монтироваться только явно. Опция -a не приведет к монтированию файловой системы
    exec     Разрешает выполнение двоичных файлов
    remount     Позволяет перемонтировать уже смонтированную файловую систему. Обычно используется для изменения опций монтирования файловой системы, особенно для того, чтобы расширить права доступа (вместо прав только на чтение установить права на чтение/запись)
    ro     Монтирует файловую систему только на чтение
    rw     Монтирует файловую систему для чтения и записи
    suid     Позволяет задействовать биты смены идентификатора пользователя и смены идентификатора группы
    sync     Весь ввод-вывод в файловую систему должен производиться синхронно
    user     Позволяет непривилегированному пользователю монтировать файловую систему. Для таких пользователей монтирование всегда выполняется с опциями noexec, nosuid, nodev
    nodev     Файлы байт-ориентированных и блок-ориентированных устройств в файловой системе не интерпретируются как специальные файлы
    nosuid     Не позволяет задействовать биты смены идентификатора пользователя и смены идентификатора группы
    nouser     Запрещает непривилегированному пользователю монтировать файловую систему

Команды mount и umount (см. ниже) поддерживают в актуальном состоянии таблицу (или перечень) смонтированных файловых систем. Этот перечень сохраняется на диске в виде файла /etc/mtab. Этот файл можно просмотреть непосредственно, или вывести на экран командой mount без аргументов.

Если вы хотите монтировать какую-то систему только для чтения из нее, то в соответствующей строке файла /etc/fstab надо либо указать опцию r (read only, по умолчанию подразумевается rw, т. е. и чтение, и запись), либо использовать команду mount с параметром -r.

Перед тем как отключить от компьютера носитель, на котором расположена файловая система, (чаще всего это требуется делать с дискетами в дисководе, но иногда и с носителями других типов), необходимо "размонтировать" файловую систему (другими словами, "размонтировать носитель"). Эта операция выполняется с помощью команды umount (замечание для тех, кто знает английский язык: имя команды не является правильным английским словом, так что не вставляйте в него лишнюю букву "n"). В качестве аргумента команде umount надо дать либо имя устройства, либо точку монтирования.

Демонтировать файловую систему может только тот пользователь, который ее смонтировал (и суперпользователь, конечно). Для того, чтобы операцию демонтирования мог выполнить любой пользователь, в поле параметров соответствующей строки файла /etc/fstab надо указать опцию users (вместо user).

Демонтирование файловой системы возможно только тогда, когда в ней нет открытых файлов (в частности, не должно быть запущено программ, файлы которых расположены в данной системе) и в системе нет процессов, использующих эту файловую систему (т. е. демонтируемая файловая система не должна быть занятой).

Надо признать, что, в сравнении с DOS или Windows, работа с дискетами и другими сменными носителями (CD-ROM, Iomega Zip и т.п.) в ОС типа UNIX менее удобна. Для того, чтобы обратиться к дискете, вы должны вначале смонтировать ее в какой-то каталог в файловой структуре. А для смены дискеты требуется вначале размонтировать предыдущую дискету, а затем смонтировать новую. То же самое с другими сменными носителями. Поскольку с дискетами и другими сменными носителями так или иначе приходиться работать, лучше сразу заготовить в файловой структуре стандартные каталоги для монтирования всех имеющихся в вашем распоряжении типов сменных носителей. Например, создать каталог /mnt, а в нем подкаталоги floppy, cdrom, zip и т. д.

 


<== предыдущая лекция | следующая лекция ==>
Політико-правова природа та історико-теоретичні основи місцевого самоврядування | Принципи, завдання та функції місцевого самоврядування
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | <== 58 ==> | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 |
Studopedia.info - Студопедия - 2014-2024 год . (0.216 сек.) російська версія | українська версія

Генерация страницы за: 0.216 сек.
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7